
matemáticas interactivas
DESCARTES

Descartes JS User Manual

Alejandro Radillo Díaz

José Luis Abreu León

Joel Espinosa Longi

November 21, 2023

Contents

1 About this document 1

2 What is DescartesJS? 3
2.1 The beginnings of Descartes . 3
2.2 Recent changes . 3

3 Introduction to DescartesJS components 5
3.1 The editor . 5
3.2 The interpreter . 6

4 Learning to use the editor 7
4.1 First time setup . 7

4.1.1 Changing the DescartesJS editor and configuration editor language . . 7
4.1.2 Changing the scene configuration language 7

4.2 The Editor’s menu bar . 8
4.2.1 The File menu . 8
4.2.2 The Options menu . 9
4.2.3 The Help menu . 12

5 The scene configuration editor (SCE) 13
5.1 Tabs . 14
5.2 Buttons in the scene configuration editor . 15

6 The Scene tab 17

7 The Spaces tab 21
7.1 R2 or two dimensional space . 21
7.2 R3 o tridimensional space . 25
7.3 HTMLIFrame space . 26
7.4 Spaces’ panel in the Spaces tab . 26

8 The Graphics tab 29
8.1 2D Graphics . 30

8.1.1 Equation graphic . 30
8.1.2 Curve graphic . 31
8.1.3 Point graphic . 33
8.1.4 Segment graphic . 34

i

ii CONTENTS

8.1.5 Polygon graphic . 35
8.1.6 Rectangle graphic . 37
8.1.7 Arrow graphic . 38
8.1.8 Arc graphic . 39
8.1.9 Text graphic . 41
8.1.10 Image graphic . 44
8.1.11 Macro graphic . 46
8.1.12 Sequence graphic . 48
8.1.13 Fill graphic . 50

8.2 3D graphics . 51
8.2.1 Segment graphic . 51
8.2.2 Point graphic . 52
8.2.3 Polygon graphic . 53
8.2.4 Curve graphic . 54
8.2.5 Triangle graphic . 55
8.2.6 Face graphic . 56
8.2.7 Regular Polygon graphic . 57
8.2.8 Surface graphic . 58
8.2.9 Text graphic . 59
8.2.10 Macro graphic . 60
8.2.11 Cube graphic . 60
8.2.12 Box graphic . 61
8.2.13 Tetrahedron, Octahedron, Dodecahedron and Icosahedron 62
8.2.14 Sphere graphic . 63
8.2.15 Ellipsoid graphic . 64
8.2.16 Cone graphic . 65
8.2.17 Cylinder graphic . 66
8.2.18 Torus graphic . 68
8.2.19 3D graphics general exercise . 69

8.3 Parameters common to 2D graphic objects . 69
8.4 Parameters common to 3D graphic objects . 72

9 The Controls tab 75
9.1 Spinner numeric control . 76
9.2 Text field numeric control . 79
9.3 Menu numeric control . 81
9.4 Scrollbar numeric control . 82
9.5 Button numeric control . 84
9.6 Checkbox numeric control . 88
9.7 Graphic control . 90
9.8 Text control . 93
9.9 Audio control . 95
9.10 Video control . 96

CONTENTS iii

9.11 Elements common to multiple controls . 98

10 The Programs tab 105
10.1 INICIO . 105
10.2 CALCULOS . 107
10.3 Events . 107

11 The Definitions tab 111
11.1 Variable definition . 111
11.2 Array definition . 113
11.3 Matrix definition . 117
11.4 Function . 118
11.5 Library . 121

12 The Animation tab 125

13 DescartesJS intrinsic functionality 129
13.1 DescartesJS intrinsic variables . 129

13.1.1 Space variables . 129
13.1.2 Mouse variables . 130
13.1.3 Text field control variables . 133
13.1.4 Graphic control variables . 133
13.1.5 Audio and video control variables . 134
13.1.6 Array and matrix variables . 134
13.1.7 Path variables . 135
13.1.8 DescartesJS general variables . 135
13.1.9 Numerical constants . 137
13.1.10Information and customization variables 137

13.2 DescartesJS intrinsic functions . 138
13.2.1 Common functions . 138
13.2.2 DescartesJS language functions . 143
13.2.3 HTMLIFrame space functions . 146
13.2.4 Audio and video control functions . 149
13.2.5 Menu numeric control related functions 149
13.2.6 Matrix and array information transfer through text variables 150

13.3 Boolean Operators and conditionals . 153
13.3.1 Boolean operators and their use in conditions 153
13.3.2 Using mute variables to condition the execution of functions 156

13.4 Generic operators . 156
13.5 Math operations order and hierarchy . 158
13.6 Update order when handling a scene . 160

13.6.1 Updates upon loading a scene . 161
13.6.2 Subsequent updates . 161

iv CONTENTS

14 Data saving and retrieving 163
14.1 Saving and retrieving information in files . 163
14.2 Data saving and retrieving within a scene . 165

15 General tools 167
15.1 Color editor . 167

15.1.1 RGB . 167
15.1.2 Gradient . 170
15.1.3 Pattern . 172

15.2 Text editing tool . 173
15.2.1 Plain text editor . 173
15.2.2 Rich text format editor . 176

15.3 The virtual keyboard . 180
15.4 Keyboard shortcuts . 181

15.4.1 Shortcuts to the configuration editor and its tabs 181
15.4.2 Listed elements navigation shortcuts . 182

1

1
About this document

This user manual is destined both for those who have not used Descartes to those who
have some experience and wish to improve it.

The manual deals with the DescartesJS editor and its general functionality. The func-
tionality is however, the main object of this document. The functionality here described
is the most common in Descartes. Son particular details are not not dealt with since they
are not commonly used.

The user manual includes exercises intended to make some concepts mor familiar to
the reader. These exercises are made available once the reader has gathered some knowl-
edge about Descartes and is considered ready to put it in practice. The solved exercises
are provided in the form of Descartes interactive scenes, so that the reader can compare
them with his own scenes. These provided solution exercises can be found in the Ex-
ercises folder included in the DescartesDocumentation.zip compressed file in https://

descartes.matem.unam.mx/doc/DescartesJS-EN/DescartesJSDocumentation.zip.
These interactive scenes are also included in the web. It is, however, important to know
they can be downloaded from this compressed file should the reader wish to use them
locally. It is also worth noticing that the links to the interactive scenes provided in this
document redirect to the solved exercise in the web, which allows to view the finished ver-
sion of the exercise, as well as a series of instructions to complete it. The interactive scenes
may contain some commands not present in the instructions or set of steps to complete
the interactive. These are there only so that the interactive scene is correctly displayed
within a container in which the user can switch between the complete interactive and the
document containing the instructions.

The exercises are typically made up of a series of steps designed to guide the user to
the creation of an interactive scene. However, the guiding steps are intentionally not ex-
plicit. This will hopefully make the reader practice, try different approaches, and check, if
necessary, the user guide to achieve a final scene. This may result in slight differences be-
tween the user’s interactive scene and that provided as an exercise solution (it is possible
for two different approaches to yield one interactive scene). Observations to each step in
the creation of a scene are also provided, mentioning the expected result after each step.
These observations may sometimes include suggestions or information to help the used
achieve the desired result for each step.

The exercises in this document tend to increase in difficulty as the reader progresses.
Later exercises involve more functionality and of mor complexity. That is why it is a sound
idea to address them in the order in which they appear, even though the reader may skip

1

https://descartes.matem.unam.mx/doc/DescartesJS-EN/DescartesJSDocumentation.zip
https://descartes.matem.unam.mx/doc/DescartesJS-EN/DescartesJSDocumentation.zip

2 About this document

to different functionality via the hyperlinks provided in the document.

The reader will hopefully be able to generate his/her own DescartesJS interactive scenes
after reading this document. It is also possible the reader may end up creating interactive
scenes of greater complexity than those provided in the exercises, due to the versatility of
the programming tool.

It is important to keep in mind that this document is not static. It is updated almost
as soon as changes are implemented in the programming tool, and corrected when errors
are spotted. It is therefore a good idea to periodically download it so as to have the latest
version. This particular version of the document covers the functionality of DescartesJS up
to version 1.3

As this is the english version of the user manual, the menus and interaction with DescartesJS
will be set to English, even though it is set to Spanish by default.

2

2
What is DescartesJS?

2.1 The beginnings of Descartes

Descartes was originally developed in Java at the end of the twentieth century as an in-
teractive scene generating tool. By then it consisted of a Java program which was able to
generate .html browser files, so that it was possible to view the interactive scenes as web
pages.

html files made in Descartes typically house interactive content and are, also typically,
developed to improve teaching certain aspects of physics and mathematics across a wide
variety of difficulty levels.

Even though there is quite a menu of interactive programs from which to choose, such
as GeoGebra, Cabri and others, Descartes is a very versatile tool which, in turn, can pro-
duce from very simple interactive programs to much more complicated ones such as ge-
ometry editing interactive scenes. Addititonally, it allows for specific interactions defined
by the teacher/programmer, such as exercises which involve randomness (for instance,
generating problems and also when building optional answers to a given exercise) and
that can be custom-made to suit the teachers’ needs (for instance, by defining the number
of decimales, etc.). These and many other features, which will be addressed further along
on this document, make of Descartes a very useful tool.

In its original Java version, Descartes was developed to be used solely in computers.
However, to new technologies made it necessary to change its functionality.

• The advent of mobile devices

• The HTML5 canvas element.

2.2 Recent changes

It eventually became necessary for the Descartes generated interactive scenes to be able
to run on mobile devices (on JavaScript). Descartes 5 is born out of this need. Even though
the editor was not drastically changed, a new library had to be included.

Descartes 5 is the penultimate main version of Descartes. It was also developed in
Java. However, the JavaScript version of Descartes (named DescartesJS) is the most cur-
rent main version. Its editor is built on JavaScript and its functionality is very similar to

3

4 What is DescartesJS?

that of Descartes 5. DescartesJS nonetheless has many new features and advantages over
Descartes 5. All this will be explained later on the document.

It is also worth mentioning that, unlike Descartes 5, DescartesJS has the advantage that
whatever is viewed on the editor will be viewed exactly once the saved file is opened in a
browser. This is an improvement on Descartes 5, in which text fonts and sizes were some-
times displayed differently in the editor and in a browser. Even though a scene’s edition
is performed on the editor, to be later opened in the user’s browser of choice, the func-
tionality and aspect remains the same in both cases since both use the same Descartes
intepreter (the interpreter will also be addressed shortly).

3

3
Introduction to DescartesJS components

Descartes JS has two main elements:

1. The editor
2. The intrpreter

3.1 The editor

The editor is a JavaScript program (DescartesJS.exe). Its installer can be downloaded from
https://descartes.matem.unam.mx, and maintenance is periodically performed to in-
clude improvements and bug fixes. So, it is good practice to reinstall it every now and then
(in my experience, at least once a month).

Once installed, a shortcut is created in Windows on the desktop.

The editor program is a graphic user interface by which the user can save html files
with various types of interactive scenes. Figure 3.1.0.1 shows the editor. Its functionality
will be addressed shortly.

Figure 3.1.0.1: The Descartes JS editor upon launching.

5

https://descartes.matem.unam.mx

6 Introduction to DescartesJS components

Suggestion: DescartesJS can be installed in a folder of choice. It is good practice to in-
stall it near the system root. For instance, in Windows it could be installed in a c:/DescartesJS
folder.

3.2 The interpreter

The interpreter is a js file (descartes-min.js) that can be downloaded from https://arquimedes.

matem.unam.mx/Descartes5/lib/descartes-min.js.
However, every time the editor is opened, it checks online to verify if the user’s interpreter
is the latest version. If not, it will prompt to download the latest version, as is shown in
Figure 3.2.0.1. The interpreter’s update dialog appears upon launching DescartesJS right
after it has been installed, and will subsequently be displayed only if the local interpreter
is older than the online one. Additionally, if the server housing the interpreter is down, it
can be automatically downloaded from an alternative site so that it is always up to date.

The updates may ocasionally include some editor’s funcionality changes. Which is
another reason to accept updates whenever they are available.

Figure 3.2.0.1: Interpreter update dialog.

This interpreter is given that name because it is a file which enables browsers to cor-
rectly intepret the code in the html file generated by the DescartesJS editor, and to therefore
display it correctly.

It is also known as the library (DescartesJS library), though that term is not preferred
since it may be confused with the library functionality of DescartesJS itself.

https://arquimedes.matem.unam.mx/Descartes5/lib/descartes-min.js
https://arquimedes.matem.unam.mx/Descartes5/lib/descartes-min.js

4

4
Learning to use the editor

4.1 First time setup

A couple of changes have to be implemented for language purposes. Quick instructions
are provided in this section, even though the parameters used to make the changes will be
addressed more thoroughly later in the document.

4.1.1 Changing the DescartesJS editor and configuration editor language

DescartesJS’ default language is Spanish. So, it is necessary to change a couple of things
following the original installation in order for the displayed language to be English.

Once the DescartesJS editor is opened, first click on the Opciones menu, then expand
the Lenguaje option and choose Inglés. The menu bar, along with all their options, should
now be displayed in English, as in Figure 3.1.0.1. The internal parameters of DescartesJS’
configuration editor, as well as their tooltip information, will now be displayed in English.

This change remains even if DescartesJS is closed and reopened, so it is only necessary
to perform it once.

4.1.2 Changing the scene configuration language

In order to change the language in which the configuration of a particular scene is saved,
click on the tool button at the top left of DescartesJS (the one with the gear icon). A new
window will be displayed. In it, inside the Scene tab, search for the language parameter
and set its menu option to english. Finally, click on Ok. This changes the DescartesJS scene
configuration language. Within the interactive scene’s html file, there is a block of code
flanked by an <ajs>...</ajs> label, in which all the DescartesJS related information is
stored. It consists of various parameters and values for each, which are in Spanish by
default. However, by changing the configuration language, it is possible to save them in
English.

This change is only recommended for users who plan on editing the html directly
from a text editor and not only via DescartesJS. However, users who only plan on using
DescartesJS can ignore this. It is necessary to do this change every time a new html scene
file is saved from scratch, since the default language for each is Spanish. However, it is not
necessary to change it for loaded html files.

7

8 Learning to use the editor

4.2 The Editor’s menu bar

As with any program, the Editor has a menu bar. Al igual que cualquier programa, el Editor
tiene una barra de menús. These consist of:

4.2.1 The File menu

• New: Creates a new DescartesJS file.

• New window: Launches a new DescartesJS window when one is already open. When
a user is editing a scene, and wishes to edit a second one simultaneously, it is nec-
essary to use this menu option, rather than trying to open the scene via the Start
Menu.

• Open: Launchese a system dialog through which a DescartesJS html file can be se-
lected for opening.

• Recently opened: When hovered with the mouse, displays a list of the paths of the
recently edited files, so that the user can locate and open them with greater ease by
simply selecting the file.

• Reload: Reloads the interactive scene from the most recently saved html file.

• Save: If the interactive scene has not yet been saved, this options desplays a dialog
to choose the html scene’s path and save name. Otherwise, using this option sim-
ply results in overwriting the file with the recent changes. It is always wise to save
periodically so as to reduce teh chance of losing progress due to a program crash.

• Save as: Launches a dialog to choose a path and an html file name in which to save
the current progress.

• Show container folder: Opens the folder in which the currently edited file is stored.

• Edit scene: Launches the scene’s configuration editor (SCE). This editor can also be
launched by clicking the tool button (the one with the gear icon displayed at the top
right corner of the canvas).

• Export: Has several options, each of which launches a dialog to save the file under
edition.

– Descartes macro: Launches a dialog to save part of the scene’s content as a
macro. A macro is typically a text file (usually with a txt file extension) with in-
formation from the Definitions, Programs, and Graphics tabs (present in the
SCE). This information can be later imported into other DescartesJS scenes.
More information on this functionality can be found under the Macro graphic
section.

– Descartes library: Stores the scene’s content as a new library (also a text file
with its txt file extension). This library can be later imported via the Definitions
tab. It is useful when there is a large number of definitions which the user may

4.2 The Editor’s menu bar 9

wanto to group into a library. Its functionality is similar to that of the macro,
except that a library stores only information from the Definitions tab. More
information on the Descartes library can be found under the Library section.

– png: Allows for the DescartesJS file displayed to be saved as a png image file.

– jpg: Allows for the DescartesJS file displayed to be saved as a jpg image file.

– svg: Allows for the DescartesJS file displayed to be saved as an svg image file.
This functionality is still in an experimental phase.

– pdf: Allows for the DescartesJS file displayed to be saved as a pdf file.

• Close scene: Closes the currently edited DescartesJS scene file. If it has undergone
unsaved changes and this option is selected, a confirmation dialog is displayed in-
dicating that information will potentially be lost should the user proceed.

• Exit: Closes DescartesJS altogether. As with the Close scene option, a confirmation
dialog is displayed when there are unsaved changes.
If an attempt is made to close DescartesJS via the system’s window closing button,
the confirmation dialog is also displayed. If the user clicks on Cancel, the program
will not be closed and no changes are lost.

Some File menu elements include keyboard shortcuts for easier access. These short-
cuts are shown at the right of each of the menu’s options. They are not addressed in this
document since they depend on the operating system being used. The user can, however,
display the menu to check them.

It is also possible to open an DescartesJS html file by dragging and dropping it on the
DescartesJS Windows desktop icon created upon installation. Yet another way to open
an existing file in Windows is to right click it and expand the Open with menu option. A
DescartesJS menu element with the Descartes icon is visible, and clicking it will open the
file in DescartesJS.

4.2.2 The Options menu

The options in this menu are:

• descartes-min.js: When selected, a submenu is displayed at its right with the follow-
ing options related to the DescartesJS interpreter:

– internet: Whenever a file save action is performed, the descartes-min.js in-
terpreter file is read from its location in the Internet (https://arquimedes.
matem.unam.mx/Descartes5/lib/descartes-min.js). This option has the
advantage that the used interpreter file version is always the most recent avail-
able. However, it does have the disadvantage that the interactive scene files
generated while saving under this option will not work if disconnected from
the Internet.

https://arquimedes.matem.unam.mx/Descartes5/lib/descartes-min.js
https://arquimedes.matem.unam.mx/Descartes5/lib/descartes-min.js

10 Learning to use the editor

– portable: This is the option selected by default. Every time a file is saved, a /lib
folder containing the interpreter (descartes-min.js) is created in the same folder
where the scene is being saved. If the folder with the interpreter file already
exists, the file will be overwritten with the latest version obtained at the time
the program checks if there are updates available. The advantage of using this
option (as well as any other different from internet) is that, when a user loads
the scenes saved under this scheme in a browser, it is not necessary to have
internet connection, as the interpreter used is the local one.

– project: When saving with this option selected, the /lib folder containing the
interpreter is generated one level above that where the html scene files are be-
ing stored. For example, if the html files are stored in c:/Project/scenes/, the
location of the /lib folder will be c:/Project/. This option is useful when there
are a lot of html scene files all grouped at the same location and pertaining to
a same project. Only one copy of the interpreter is enough to service all these
files, which in turn saves disk space.

– custom: The user enters, via a pop-up dialog, the location where the inter-
preter is to be saved. This option is useful for projects with complex file struc-
tures where there are various levels of scene files, but which are all to be ser-
vices by a single interpreter file.

As already stated, the last three options allow the user to use a local version of the
interpreter. This enables scenes to work even in the absence of internet connectivity.
It is useful to understand how the interpreter file is stored and when using the local
options. When opening DescartesJS, it checks for the latest interpreter version stored
in the web and keeps it if it is newer than the one locally stored. Then, upon saving a
scene, it will copy it to the local folder (depending on the local option chosen by the
user) if it does not already exist. If it already exists, it will be overwritten by the latest
version.

• Add to HTML: When selected, the following submenu options are displayed, all of
which are selected by default:

– library: If selected, the content of any Descartes libraries imported in the scene
is stored as a copy in the scene’s html code upon saving the scene. It is stored as
text inside a script label. That is, after the html file’s body, there is a <script>
</script> text block including the name of the library.
Suppose the scene being edited imports a library named prm.txt inside an lbr
folder. The scene will be able to use any definitions in that library. And if the
library option in the Add to HTML menu is marked, the text content of that li-
brary will be saved in the scene’s html file under the script flanked by the labels
<script type=�descartes/library� id=�lbr/prm.txt�>...</script>.
Even if the original library file (prm.txt) were to be deleted, if the copy of such
library is still inside the scene’s html code in the form of a script, the scene will
then import any necessary definition from the script.

4.2 The Editor’s menu bar 11

– macro: If this option is marked, the text of an imported macro is included as a
script (between the <script></script> labels) in the scene’s html code upon
saving the scene. It works in basically the same way as with the libraries.

– array: Does pretty much the same as the two options above, but for arrays. Ar-
rays are a type of definition, and will be addressed further along the document
under the array section. When the array option is marked, the array’s informa-
tion imported from a text file is included as a script in the scene’s html code
upon saving. And, in the same way as in the previous cases, its information
can be retrieved from this script in the event that the text file containing the
information goes missing.

• Language: It is a menu to select the language used both in menus as inside the
scene’s configuration editor (the one launched by pressing the tool button, the one
with the gear icon on the top right corner of the canvas). This is actually one of the
ones changed in section 4.1 in order to get DescartesJS working in English. The user
may set it to Spanish, English, German, Catalan, Basque, Galician, Valencian and
Portuguese.

• Zoom: A menu with three options that control the zoom to DescartesJS’ work area
or canvas. It is particularly useful when the size of a scene does not fit in a certain
screen, and it is therefore necessary to zoom out. Any changes in zoom are only
for the user’s comfort, and will not have any impact whatsoever on the scene being
developed. The three options inside Zoom are:

– Increase: slightly increases size.

– Decrease: slightly decreases size.

– Initial: restores the original size of the canvas before implementing any zoom
change.

• Color theme: A menu to select the background color behind DescartesJS’ work area
or canvas. The options are Classic (a gray-green color typical of DescartesJS), Dark,
Light and Blue.

• Show console: When this option is used, a window known as the DescartesJS con-
sole is launched. Its function is to list possible parsing errors DescartesJS finds. It
can also be used to print values which can themselves be used for debugging pur-
poses. Printing is achieved via the _Print_() or _Trace_() commands (both are
equivalent). These functions’ argument is typically a variable whose value the user
wishes to know. The argument can also be an expression. For instance, in a loop
where the value of a certain variable i increases by 1 in each step, the instruction
Print(i+','+(i+1)) within the loop will result in printing the value of i in the
console, followed by a comma, and followed by the value of i plus one unit.

Note that the console also allows for the visualization of internal programming er-
rors (for example, divisions by zero, square roots with negative arguments, etc.). It

12 Learning to use the editor

Figure 4.2.2.1: The DescartesJS console, printing the i and i+1 example mentioned.

is suggested to always have it open when developing a scene involving complicated
programming, so as to be able to be notified of any errors as soon as they are entered.

When the amount of lines in the console excedes its size, a vertical scroll bar ap-
pears which can be used to navigate the screen. When any new lines added to the
console, these are displayed at the end of its contents. And whenever this happens,
the scrollbar is placed at the bottom, so as to be able to see the last lines first.

It is always possible to clear the console’s contents by closing it and reopening it
again.

The errors printed in the console are in Spanish.

4.2.3 The Help menu

This menu includes options related to DescartesJS miscellaneous information.

• Documentation: Launches a browser window displaying the pdf of the current doc-
umentation (check if it’s possible to set the link to the English documentation).

• Release notes: Launches a window which indicates the latest version number and
which includes a list of this version’s changes / improvements. It also has a Versiones
anteriores (previous versions) hyperlink at the end of the list, which can be used to
obtain the history list of the previous versions along with the change / improvement
lists.

• About Descartes: Launches a window which contains the DescartesJS logo, the ed-
itor and interpreter’s version, and information about the program’s author and li-
cense.

5

5
The scene configuration editor (SCE)

The scene configuration editor is a new window where the real programming takes place.
This window is launched by pressing the tool button (the one with the gear icon near the
top right corner of the canvas). Figure 5.0.0.1 shows this button’s location.

Figure 5.0.0.1: Tool button, which launches the scene configuration editor.

The button below, with a code screen icon, launches a screen in which the code of the
scene can be edited as text. Figure 5.0.0.2 shows this screen.

The elements of the scene are enumerated in this screen. They are also separated via
alternating background colors, so as to be able to locate a particular code line por easily.
This code can be manually edited and any changes will be implemented upon pressing
the Ok button at the bottom of the screen. However, the user should be extra careful when
using this screen for edition, since a mere typo can be enough to wreck the code. Even
though the code may seem strange at the beginning, as we go forward it will be easier to
understand.

Figure 5.0.0.3 shows the configuration editor window. The superior part of this window
contains various tabs essential for its use.

13

14 The scene configuration editor (SCE)

Figure 5.0.0.2: Scene edition screen.

Figure 5.0.0.3: Configuration editor window.

5.1 Tabs

The scene configuration editor consists of seven tabs used to edit different parts of the
interactive scene. A brief description of each is provided in this section, even though later
sections include more in-depth information on each.

The Scene tab is used to make changes in the scene’s general interface.

The Spaces tab is used to add, duplicate, remove or edit the properties of the existing

5.2 Buttons in the scene configuration editor 15

spaces in an interactive. Spaces are areas which house graphic elements as well as controls
with which the user can interact.

The Controls tab is used to add, duplicate, remove or edit the properties of the interac-
tive scene’s controls. These controls are the means of interaction with the user.

The Definitions tab is used to add, duplicate, remove or edit the properties of elements
making up the scene’s actual programming. This part contains elements inside which the
hard code that makes the scene work is housed.

The Programs tab contains algorithms and events. Just as the Definitions, these also
house the actual code behind the scene’s functionality. In particular, they have to do with
the scene’s initial preparation, so that it is ready to be used. But they also have to do with
instruction which are repeated in every step or only when certain conditions are met.

The Graphics tab is used to add, duplicate, remove or edit the graphics displayed as
part of certain Spaces.

The Animation tab is used to edit the instruction and conditions of an animation, if
one is to be present.

As already mentioned, all these tabs will be addressed with more depth in their respec-
tive sections.

A very useful editing tool are the pop-up information tooltips that appear when hov-
ering the name of a parameter with the mouse. For example, the do in Figure 5.0.0.3 will
display its tooltip information if the mouse is held over the word for a moment. The infor-
mation appears as a panel containing the explanatory text about the item being hovered.
The panel disappears when the mouse is moved. Figure 5.1.0.1 shows an example of this
type of help for the do parameter of the INICIO algorithm inside the Programs tab. The cur-
rent version of DescartesJS offers the option to choose from among 10 different languages:
English, German, Catalan, Euskara, French, Galician, Italian, Valencian and Portuguese.

5.2 Buttons in the scene configuration editor

The configuration editor also has three buttons at the bottom.

• Ok: When a change is made in the configuration editor, it is not immediately im-
plemented on the scene. When the Ok button is pressed, the configuration editor
window closes and focus is set on the editor window, where the scene is displayed in
its canvas with the latest changes implemented.

• Close: This button closes the configuration editor, but does not apply any changes.
Any new change will not be present in the interactive scene after closing the config-
uration editor.

• Apply: This button applies all changes. The interactive scene will refresh itself with
the latest changes. This button basically does the same as the Ok one, except that

16 The scene configuration editor (SCE)

Figure 5.1.0.1: Emergent tooltip information for elements in the configuration editor.

it does not close the configuration editor: focus is set on the DescartesJS editor, and
the configuration editor remains open in the background.

Whenever any of these three buttons is used, the DescartesJS main editor (the one with
the canvas) associated to that configuration editor window is brought up as the top win-
dow. This enables the user to quickly focus on the interactive scene in question, which is
usefull when multiple scenes are being edited in multiple instances of DescartesJS. In this
way, the user knows which scene was the one in which changes were recently applied.

When using automatic animations (animations that launch themselves as soon as the
interactive scene containing them is loaded), it is better to use the Ok button instead of
the Apply one when implementing changes, since only by using the Ok button will the
animation begin automatically. When loading any such scene in a browser, the animation
will always start automatically if it is so set in the Animation tab.

It is also worth remembering the clicking on Ok or Apply does not necessarily mean
that the changes are saved. Changes can be made via the configuration editor, for example,
by clicking the Ok button, after which the interactive scene will implement the changes.
However, the html scene file will not have such changes until it is saved via the Save or
Save as options in the File menu.

6

6
The Scene tab

Scene allows the user to control the most general aspects of the scene’s interface. Figure
6.0.0.1 shows the tab and its elements.

Figure 6.0.0.1: Scene tab parameters.

The parameters in this tab are the following.

• width: A text field where the width of the scene (measured in pixels, or px) is set.

• height: A text field where the height of the scene (also in px) is set.

• button about: A checkbox that, when marked, includes in the interactive scene a
button labeled créditos. When this button is clicked, a pop-up window is displayed
with information about the authorship and license of DescartesJS.
This functionality of launching the information window is designed specifically for
scenes that are viewed in a browser, not in the DescartesJS main editor. Pressing this
button in the editor will launch a system window only.

• button config: A checkbox that, when marked, includes in the interactive a but-
ton labeled config. When clicked, a pop-up window is displayed which contains the
DescartesJS code of the scene. This code can be embedded in a web page if, for in-
stance, the user wishes a web page to include such information.
As with the about button, this button also only works when viewing the interactive
scene in a browser, and not in the DescartesJS editor.

• button init: A checkbox that, when marked, includes in the interactive scene a but-
ton labeled inicio. When this button is clicked, it reloads the scene from the begin-
ning, as if it had just been loaded from the last saved version, thus removing any
changes the user may have introduced since it was last saved.

• button clear: A checkbox that, when marked, includes a button labeled limpiar in
the interactive scene. When this button is clicked, any graphic traces that could have

17

18 The Scene tab

been introduced by the user are erased. More information on Traces can be found
later in the document.

• rows north: A text field in which the user enters an integer that corresponds to the
number of rows that make up the north (topmost) panel of the scene.
This panel has a gray background, and typically houses controls. When the about
and/or config buttons are to be displayed, they will be displayed in a north panel
row regardless of whether rows are set to be displayed in the north panel via the
rows north parameter or not.

• rows south: A text field in which the user enters the number of rows that make up
the south (bottom) panel of the scene.
This panel also has a gray background and can also house controls. When the init
and/or clear buttons are to be displayed, they will be displayed in a row in the south
panel regardless of whether rows are set to be displayed via the rows south parameter
or not.

• width west: A text field in which the user enters the number of px of the width of the
west (left) panel.
Again, this panel has a gray background and can also house controls.

• width east: Basically the same as width west but related to the east (right) panel.

• height rows: A text field where the height of the rows (the same rows indicated in
the rows north and rows south parameters) are entered in px.

• decimal symbol: A menu to choose the type of symbol used to divide the integer
part from the decimal part in a number. The possible options are a period and a
comma.

• language: A menu with language options in which to display the saved scene set-
tings.
As a reminder, this sets the language in which the parameters in the DescartesJS
block of the scene’s saved html file are displayed, but has nothing to do with the
language in which the DescartesJS interface is shown. This is set in the language op-
tion of the Options menu in the DescartesJS main editor, whereas the saved scene
settings are set via the language menu in the Scene tab.

• show external region: A checkbox that, when marked, enables the user to lauch the
external region by right clicking the mouse on a scenes canvas.
The external region is a pop-up window that can be used to house controls as well.
This window always houses the about, config, init and clear buttons, even when
they are not to be displayed as part of a scene (when their respective checkboxes are
unmarked). Any control with its region set to external will be found in this window.
This region is typically reserved for the programmer developing the scene, who may
use controls for debugging purposes that are not to be visible for the end user. In
these cases, the show external region is unmarked prior to releasing the scene to the
end user.

19

• expand scene: A menu via which a scene that does not exactly fit in the container
can be altered to make it fit. This behavior can only be seen correctly in a browser,
since the editor’s size is defined by the width and height parameters in the Scene tab.

When set to cover, if the browser’s area exceeds that of the scene, a larger space
will be considered to cover the browser’s area completely. No rescaling or stretching
takes place; it only considers more (or less) of the space being shown in the editor,
so as to cover the browser’s area. The spaces in the scene keep their scale.

When set to fit, if the browser’s size is different than the original scene, the spaces
in the scene are rescaled until they fit in the browser. The horizontal and verti-
cal scales are changed until either the scene’s width fits the horizontal span of the
browser, or the scene’s height fits the vertical span of the browser (whichever hap-
pens first). Thus, the relative horizontal to vertical scale ratio is maintained, and the
scene will not be deformed.

• image loader: A text field where a path and file, relative to the folder that houses
the scene’s file, is introduced. If left empty, the DescartesJS default logo is displayed
upon loading a scene. Otherwise, the image set in the path will be displayed. This
behavior can be seen correctly only in a browser, as it may not work in the editor.

The config, init and clear buttons may be helpful during the development of a scene.
They are, however, seldom useful once the scene is finished. Additionally, since these but-
tons are found two in the north region and two in the south one, their presence results in
the reduction of the area available for the scene.

20 The Scene tab

7

7
The Spaces tab

Spaces has the parameters necessary to control all the spaces (initially shown as cartesian
planes) present in an interactive scene. All the graphic objects and texts are drawn inside
spaces.

The default space shown is a 2D space displayed right after launching the DescartesJS
main editor. Within the Spaces tab, it is labeled E1 in the left panel that contains the list of
the scene’s spaces. Figure 7.0.0.1 shows an example of this tab.

Figure 7.0.0.1: The Spaces tab.

The space shown in the Figure has the identifier E1 by default, as can be seen in the id
text field in the Spaces tab. Notice that the width and height of this space are set by default
to 100%, thus indicating that this space is to span all the scene’s area defined in the width
and height parameters of the Scene tab.

7.1 R2 or two dimensional space

We now address the parameters found in 2D spaces in the Spaces tab.

• info: Text field where the user may enter a reminder of information about this space
(i. e., what it does, or what it stores). The purpose of this brief description is only
as a reminder to the programmer, or to make it easier to identify a space. It will not
be shown to the end user. If text is entered in the info text field, part of it will be
displayed in the list panel at the left, so that the programmer may easier find a par-
ticular space when there are many spaces involved.

21

22 The Spaces tab

The info text field is present in all other elements (not just spaces) of the DescartesJS
configuration editor. It is there as a means to better identify certain elements when
there are many involved. Even though it is present in future elements of the configu-
ration editor, its description will not be repeated for each element since its function
is the same as stated here.

• id: A text field that contains the space’s identifier. It is the name with which the
program identifies the space in question. Identifiers start with letters. Identifiers are
only important in the program itself; they will not be known to the scene’s end user.

• draw if: A text field in which a boolean condition is entered. This condition is eval-
uated to determine if the space will be displayed or not.
Many elements in DescartesJS have this draw if attribute, which easily allows the
programmer to build objects that are shown or hidden under specific conditions. If,
for example, 2==1 is entered, the program compares 2 with 1. As they are not equal,
the expression is considered false, a 0 is internally returned, which in turn results in
the space not being displayed. If, however, 1==1 is entered, since this expression is
true, a 1 value is internally returned and the space is displayed. It is also possible to
directly enter 1 or 0 in the text field in order to respectively display the space or not.
More information on boolean conditions can be reviewed in the boolean operators
and conditions section.

• x: A text field in which the horizontal coordinate of the top left corner of the space
is entered in px. Measurements start at the top left corner of the scene’s area. The
space’s top left corner will therefore be x pixels to the right of the top left corner of
the canvas.

• y: A text field in which the vertical coordinate of the top left corner of the space is
entered in px. Measurements start at the top left corner of the canvas, and positive
amounts result in moving the space down. The space top left corner will therefore
be y pixels below the top left corner of the canvas.

• width: A text field which contains the width of the space in px. If the amount entered
has a % suffix, the amount is taken to be the percentage of the scene’s width (the
width entered in the width parameter of the Scene tab) instead of as a number of
pixels.

• height: A text field which contains the height of the space in px. Again, a % suffix
indicates the amount entered is to be considered as the percentage of the scene’s
total height.

• resizable: A checkbox that, if marked, allows for a more flexible behavior of the space
in question. When activated, the height and width of the space can be defined via
variables.
If a variable is entered for the height or width of the space, the value of that variable
will determine the height and/or width, making that space a more dynamic object.
It is therefore possible to assign the space a height or width greater than that of the
entire scene.

7.1 R2 or two dimensional space 23

• fixed: A checkbox that, when marked, fixes the axes of the space.
If the axes are not fixed, the end user can move the origin of the space with the mouse
(by pressing, dragging and dropping). The scale of the space (the number of px that
make up a unit length) can also be changed by pressing the right mouse button and
dragging vertically (up to increase the scale, down to reduce it). If the fixed checkbox
is activated, these actions are no longer possible. The spaces scale and offset can still
be changed, though not using the mouse, and rather changing the value of certain
space-the specific variables. More information regarding this functionality can be
found under the space variables section.

• scale: A text field which contains an integer value corresponding to the scale of the
space (how many pixels make up a length unit in any of the axes. The default value
is 48 (the unit of length in the cartesian plane of the space is made up of 48 px).
Reducing the value of the scale results in zooming out, while increasing it results in
zooming in.

• O.x: (from x offset). A text field in which an integer value is entered, corresponding
to the number of px by which the space’s origin is moved horizontally from the cen-
ter of the space.
By default, the origin of a cartesian plane is placed at the center of the space. Enter-
ing a positive value for O.x results in shifing the origin to the right by that amount of
px. Entering a negative value results in a shift towards the left of the space.

• O.y: (from y offset). A text field which indicates the vertical offset in px of the origin
of the cartesian plane. It works in a similar manner to O.x, only vertically. A positive
value corresponds to a downward displacement, while a negative one to an upward
displacement.

• image: A text field in which a path and name of an image file (e. g., png, jpg, gif
or svg) is entered. The image will then be displayed as the space’s background.
The path is relative to the folder where the html scene file is stored. For instance,
images/cover.png would be an appropriate path and name if the images folder
were contained in the same folder as the html file.
In order for the changes to be evident, it is recomended to first save the html scene
file, and then set the path and name of the image.

• background display: A menu with options related to the position where the back-
ground image is to be placed.

-topleft: the image’s top left corner is placed at the top left corner of the space.

-stretch: the image is stretched both horizontally and vertically so that the whole
area of the space is covered by it.

-patch: the image repeats itself as many times as necessary so as to cover all the
space’s area.

-center: the image preserves its size, but its center is placed at the space’s center.

24 The Spaces tab

• border width: A text field in which the user sets the number of px that correspond
to the width of a border around the space’s area. If left with its default 0 value, no
border is drawn.

• border color: A button that launches the color editor. Upon accepting a color, it will
be set as that of the border surrounding the space.

• border radius: When the border corners are to be set as curved, this text field con-
tains the number of px that comprise the radius of an arc that is to be the aforemen-
tioned curved corner. When using its default 0 value, the corners are not curved.

• background: A button which launches the color editor, with which the space’s back-
ground color can be set.

• Checkboxes to edit the axes, net, text and numbers. Each checkbox comes with a
button to launch the color editor, so as to easily set the color of each of the elements.
The checkboxes are:

– axes: the cartesian axes.

– net: grid lines parallel to the coordinate axes used as a frame of reference.

– net10: color of the grid lines drawn every 10 units in the previous grid.

– text: displays the coordinates of the point where the user left clicks. muestra
las coordenadas del punto en que se hace clic en el espacio. Este checkbox no
tiene control de color. The checkbox is not marked by default, meaning the
coordinates are not to be displayed when the user left clicks.

– numbers: A checkbox that, when marked, results in drawing reference num-
bers at the axes.
The color of the numbers is the same as that of the axes. If the axes are not
drawn, the numbers are not drawn either, even if the current checkbox is marked.
Its default value is unmarked.

• x axis: A text field in which the title name of the x axis is set.

• y axis: A text field in which the title name of the y axis is set.

• sensitive to mouse movements: A checkbox that, when marked, implies the pro-
gram will recalculate all the mouse related variables when the mouse is hovered over
the space in question, even if the user does not actively click the mouse.
This functionality can be powerful, but its abuse is not suggested since it involves
significantly increasing the number of internal calculations, which could result in a
less than optimal performance.
As it will eventually be seen, this functionality can also be used with 3D spaces.

7.2 R3 o tridimensional space 25

7.2 R3 o tridimensional space

Up until now we have only dealt with 2D spaces. 3D spaces can also be used in DescartesJS.
These are a type of space in which 3D objects can be handled. Figure 7.2.0.1 shows the
configuration editor displaying a new tab (3D Graphics). This tab is only displayed when
a 3D space has been added to the list of spaces in the Spaces tab, and the changes have
been applied.

Figure 7.2.0.1: 3D graphics location.

Most of the parameters of these spaces are the same ones present in 2D spaces, with
only a few exceptions, namely:

• render: A menu which determines how the objects present in 3D are displayed.
There are two different ways in which objects are rendered in 3D:

– sort: draws 3D objects from back to front. This is the fastest method to draw
objects, but has the drawback that objects composed of large faces may not be
drawn correctly.

– painter: draws first the objects that are covered by others in a given perspec-
tive. The rendering is slower when using this option, but is more reliable when
objects intersect each other.

• split: A checkbox that, when marked, improves the way objects that intersect each
other are displayed. If the user is sure objects in this space are not to intersect, this
checkbox can be left unmarked, which is its default state.

3D spaces can be handled by pressing and dragging. The user can, via these interac-
tions, perform rotations of the space so as to be able to view it from different perspectives.

And, by right clicking and dragging, the user can zoom in towards the origin or zoom
out. Right clicking and dragging upwards will zoom in, while dragging downwards will
zoom out, in very much the same way as in 2D spaces.

26 The Spaces tab

7.3 HTMLIFrame space

These spaces contain web pages. They have a file text field in which the path (including
the file name) to a file is entered, relative to the html scene’s file folder. It is also possible to
enter a web address. As usual, to view the implemented changes, the user has to first save
the html file in its containing folder and then enter the HTMLIFrame file. After clicking
Apply the associated file will be correctly displayed.

7.4 Spaces’ panel in the Spaces tab

Besides the control parameters present in the Spaces tab, there is a panel to the left, which
can be used to create new spaces, duplicate existing ones, remove them, select them for
edition purposes, and alter the order in which they are listed. This can be seen in Figure
7.4.0.1

Figure 7.4.0.1: Left panel of the Spaces tab.

• Spaces: A gray button labeled Spaces. When clicked, a text edition window is launched
in which the user can manually edit the properties of all the listed spaces. This is use-
ful in cases in which, for example, a single same change has to be done in various
spaces. Doing this change might require navigating from space to space in the con-
figuration editor, while in the manual edition window it would be more immediate.
The used must, however, be very careful while performing edition this way, since
the accidental addition or elimination of certain characters could render the code
unreadable. The use of this functionality is therefore only suggested for experienced
DescartesJS users.
It is important to point out that this functionality is not only available for spaces,
but for all the other configuration editor tabs as well (with the exception of Scene
and Animation). All the configuration editor tabs which handle a list of items (e. g.,
list of definitions, graphic objects, etc.) have this left panel and the top button which
launches a text edition window that can be used to perform manual changes to the
code.

7.4 Spaces’ panel in the Spaces tab 27

• +: This button launches a dialog. In it, the user can provide, via a menu, the type of
space to add (R2, R3 or HTMLIFrame) and a name, via a text field, for a new space
to be added. The dialog has the Add and Cancel buttons to implement the action or
not.

• *: This button launches a dialog in which the user can, via a text field, provide a
name to a new space that is to be a clone of the last selected space in the list. Upon
pressing Clone in this dialog, a new space will appear at the botton of the list. This
space is of the same type and has the same parameters’ values as the one selected
for cloning.

• -: This button launches a confirmation prompt. The user is asked to confirm the
deletion of the selected space.

• order arrows: An upward pointing triangle and a downward one. These two buttons
can be respectively used to move the selected space in the list upward or downward.
The order in which spaces are listed is the order in which they are drawn on the
canvas. For example, in Figure 7.4.0.1, the E1 space is drawn first, then the E2, and
then E3. If they are set at the same coordinates, then the last one in the list will end
up covering the other two.

In order to get a better grasp of the concepts, we can perform an exercise to practice.
This exercise’s interactive scene, along with the instructions to successfully do it, can be
found at Spaces. The standalone interactive scene’s document is found at this link. All
these files are also found in the DescartesJSUserManual.zip file. It is good practice to apply
the changes after each step of the instructions, as well as to save periodically.

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Spaces/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Spaces/Spaces_scene.html

28 The Spaces tab

8

8
The Graphics tab

We skip ahead to the last of the tabs in the scene configuration editor: the Graphics tab. We
do this because it is the most natural step after Spaces when learning to use DescartesJS.
Graphics consist of a wide variety of figures and texts that are used to enrich the interactive
scene.

Many of these graphics share the same functionality. So, the general or shared func-
tionality of all the graphic objects is described at the end of the topic and is not present in
each of them: only the parameters unique to a particular graphic object will be explained
inside the description of that object.

Just as with Spaces, there is a panel to the left of the Graphics tab containing a list of the
graphic objects. And just as with Spaces the + button adds a new graphic, the - button
can be used to remove, there are two buttons to shift the selected graphic upwards or
downwards in the list, and there is another button reading Graphics with which a code
list of all the graphics is made available for edition. Figure 8.0.0.1 shows the Graphics tab.

Figure 8.0.0.1: The Graphics tab.

Graphic objects, or graphics, have to be housed in a specific space. There is a new
menu at the top of the left panel of the Graphics tab that display’s the existing spaces. This
menu is only visible when there are graphic objects present (if there are none, the menu
is not available). And it works as a filter: when a given space is selected, the list of graphic
objects in the panel below will only contain graphics belonging to that space. If the menu
is set to *, all graphic objects are listed, regardless the space to which they belong. This
functionality allows for an easier identification of the graphics present, especially when
there are many, and / or many spaces as well.

When multiple graphics present in a single space intersect each other, they are drawn
in the order in which they appear in the list of graphics of their containing space. So, the
first one in the list will be drawn first, and the last one last. If there are intersections, the
last one covers the preceding ones in the list.

29

30 The Graphics tab

Also as with spaces, there is a Graphics labeled button at the top of the panel. This one
launches a window with the code related only to the Graphics tab. The code here displayed
contains all the graphic objects, not only the ones filtered for a given space.

8.1 2D Graphics

These include the most commonly used graphics, and are drawn only on 2D spaces.

8.1.1 Equation graphic

This graphic is used to draw the curve of a given equation. Figure 8.1.1.1 shows and equa-
tion graphic, and Figure 8.1.1.2 shows the configuration required to obtain that graphic.

Figure 8.1.1.1: Equation graphic object example.

Figure 8.1.1.2: Configuration of the equation graphic. The hex color used is 8E44AD.

• expression: A text field where the equation to be graphed is entered. It uses the y and
x variables to refer to the ordinate and abscissa variables in the plane, respectively.

8.1 2D Graphics 31

For instance, the y = x that appears by default draws the identity line. But it is also

possible to enter x2 + y2

2 = 1 (entered as x ∧ 2+ (y ∧ 2)/2 = 1). The expression can
therefore be implicit, and not necessarily an explicit function y of x.

• positive fill: A checkbox that, when marked, enables the coloring of areas between
the graph and the x axis, only for domain intervals for which the graph lies above that
axis. It also has a color button (that is active only when the checkbox is marked) that
launches the color editor to select the fill color. For example, for a y = x3 function,
the fill will be present right of the y axis between the graph and the x axis.

• negative fill: A checkbox that, when marked, enables the coloring of areas between
the graph and the x axis, only for domain intervals for which the graph lies below
the x axis. It also has its color button to select the negative fill color.

• visible: A checkbox that, when marked, enables a text field at the bottom of the
interactive which has the entered equation in it. This is useful in cases where the
user is supposed to know what is being graphed.

• editable: A checkbox that, when marked, allows the equation shown by marking the
visible checkbox, to be edited by the user, allowing the graph to change as well. This
checkbox only makes sense if the visible checkbox is marked.

• The background, draw if, abs coord, trace, family, parameter, interval, steps, width,
info and line style are discussed at the end of the current topic. The color buttons
included for the color, positive fill color and negative fill color are generic and ex-
plained under the color editor section.

It is important to bear in mind how the power operator works in the expressions of
equations. Functions entered as y=x∧p, with p not an integer, are only defined for x>0.
It would be necessary to enter, for example y=(x∧3)∧(1/5) if the graph to be drawn in-
cludes all the negative values of the x argument. If only y=x∧(3/5) is entered, the graph
will only be drawn for positive domain values (x>0). This is related to the way in which
roots are interpreted when using the ∧ operator, and is explained with more detail under
the power operator topic.

8.1.2 Curve graphic

This graphic consists of various segments that join given points determined by the graphic’s
parameters. The parameter is a variable that adopts values within an interval divided by
a number of steps. A curve can be seen as a series of segments joined by their extreme
points. Figure 8.1.2.1 shows an example of such a graphic. Figure 8.1.2.2 shows the con-
figuration for this example.

32 The Graphics tab

Figure 8.1.2.1: Curve graphic example.

Figure 8.1.2.2: Curve graphic example configuration. The hex color used for the example
is 8E44AD.

• expression: A text field in which the positions of the vertices defining the curve are
entered via a couple of parametric equations (one for the horizontal coordinate, one
for the vertical) using a certain parameter. The default value is (t , t), so the default
curve lies on the identity line.

• parameter: A text field where the parameter to be used in the expression is specified.
By default, the parameter is t. It is important to stress the difference between the
curve’s parameter and the family parameter (s by default).

• visible: A checkbox that, when marked, enables the curve’s expression to be dis-
played in the interactive near the bottom.

• editable: A checkbox that makes sense only when the visible checkbox is marked.
When marked, it makes the displayed curve’s expression also editable, so that the
user can also modify it, and thus modifying the graph.

Now that we have seen two different graphic objects, we can do a brief exercise. We

8.1 2D Graphics 33

will see how a many sided polygon inscribed in a circle can be made to resemble the circle
itself.

This exercise’s interactive scene, along with the instructions to build it, can be found
at Graphics Curve. The interactive scene’s document as such can be found at this link. All
these files are also stored in the DescartesJSDocumentation.zip file.

8.1.3 Point graphic

This graphic consists of a single point with its coordinates explicitly provided. Figure
8.1.3.1 shows an example of this type of graphic object. Figure 8.1.3.2 shows the config-
uration required to get such a graphic. Note that the cartesian plane can be clicked and
dragged so that its position is shifted.

Figure 8.1.3.1: Point graphic object example.

Figure 8.1.3.2: Point graphic example configuration. The hex color used for the example is
8E44AD.

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Graphics_Curve/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Graphics_Curve/Graphics_Curve_scene.html

34 The Graphics tab

• expression: A text field where the coordinates of the single point are entered.

• decimals: A text field in which an integer is entered, corresponding to the number
of decimals that are to be shown should the text include any variable value.

• fixed: A checkbox which, when marked, forces the text to display the number of
decimales chosen via the decimals paramter, even if they are not significant (here
we take a significant decimal as that which is either non-zero, or is zero but has
non-zero trailing digits to the right). When this checkbox is marked, the specified
number of decimals will always be displayed, and no more. If not, only that number
of significant decimals will be displayed.

A brief exercise might help clarify some of these aspects. In this exercise, we will also
review families of graphic objects (in this case, family of points), a bit of texts and relative
vs absolute coordinates. This exercise’s interactive scene, along with the instructions to
build it, can be found at Graphics Point. The interactive scene’s document as such can be
found at this link. All these files are also stored in the DescartesJSDocumentation.zip file.

8.1.4 Segment graphic

This graphic object is, as its name says, a segment flanked by two points. Figure 8.1.4.1
shows an example of this type of graphic object. Figure 8.1.4.2 shows the configuration
required to obtain this display.

Figure 8.1.4.1: Segment graphic object example.

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Graphics_Point/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Graphics_Point/Graphics_Point_scene.html

8.1 2D Graphics 35

Figure 8.1.4.2: Segment graphic example configuration. The hex color used for the exam-
ple is 8E44AD.

• expression: A text field in which the extreme points’ coordinates are entered.

• width: A text field in which the segment’s width in px is entered.

We now do a brief exercise to practice the use of segments. This exercise’s interactive
scene, along with the instructions to build it, can be found at Graphics Segment. The
interactive scene’s document as such can be found at this link. All these files are also stored
in the DescartesJSDocumentation.zip file.

Notice that, in this exercise, the segments used are set in absolute coordinates. That is
the reason why they remain static even if the cartesian plane is moved around or zoomed.

8.1.5 Polygon graphic

This graphic object is drawn from the sequential coordinates of its individual vertices. Fig-
ure 8.1.5.1 shows an example of this type of graphic object. Figure 8.1.5.2 shows the con-
figuration required to obtain the example.

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Graphics_Segment/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Graphics_Segment/Graphics_Segment_scene.html

36 The Graphics tab

Figure 8.1.5.1: Polygon graphic object example.

Figure 8.1.5.2: Polygon graphic example configuration. The hex color used for the example
is 8E44AD.

• expression: A text field in which the coordinates of the polygon’s vertices are en-
tered sequentially. The sides of the polygon will be drawn as segments between the
sequential vertices: from the first to the second, from the second to the third, and so
on. Regardless of the implications of the polygon name, it can also be an open figure
if the first and last vertices are not the same.

• fill: A checkbox that, when marked, allow the interior of the polygon to be filled
with the color selected via the color editor button right of the checkbox. Particularly
useful for closed polygons.

Let us do an exercise to practice the use of polygons. In this exercise, we will also in-
clude a second space which could be used as a means to provide the scene’s user with
feedback or instructions. This space is to be framed, and the frame will itself be the poly-
gon. This exercise’s interactive scene, along with the instructions to build it, can be found
at Graphics Polygon. The interactive scene’s document as such can be found at this link.
All these files are also stored in the DescartesJSDocumentation.zip file.

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Graphics_Polygon/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Graphics_Polygon/Graphics_Polygon_scene.html

8.1 2D Graphics 37

In this exercise, we also had a peek into some of DescartesJS’ internal variables, as those
associated with the width and height of spaces. As it was seen, knowing how to use them
can come in handy. A more in-depth explanation of these variables can be found under
the space variables topic.

8.1.6 Rectangle graphic

This graphic object allows the user to draw a rectangle by providing the coordinate of its
top left corner, as well as the width and height of the rectangle. Figure 8.1.6.1 presents an
example of this type of graphic object. Figure 8.1.6.2 shows the configuration required to
obtain the example.

Figure 8.1.6.1: Rectangle graphic object example.

Figure 8.1.6.2: Rectangle graphic example configuration. The hex color used for the exam-
ple is 8E44AD.

• expression: A text field in which the four coordinates are entered between a signle
pair of parentheses and separated by commas: the x coordinate of the top left corner,
its y coordinate, the width, and the length of the rectangle.

38 The Graphics tab

• border radius: When the corners are to be round, this text field indicates the num-
ber of pixels of the radius of an arc that will be the new corner.

Let us do an exercise to practice the use of rectangles. As with the polygon graphic’s
exercise, the rectangle here is to be used as a border for a space that could work as a panel
to provide feedback or instructions to the scene’s user. This exercise’s interactive scene,
along with the instructions to build it, can be found at Graphics Rectangle. The interactive
scene’s document as such can be found at this link. All these files are also stored in the
DescartesJSDocumentation.zip file.

We can see from this exercise that the rectangle has a more direct approach to drawing
these objects than when using polygons.

8.1.7 Arrow graphic

This graphic object is very similar to the segment. It is also defined by a couple of coor-
dinates: the beginning and the end (or spear) of the arrow, in that order. Figure 8.1.7.1
shows an example of this type of graphic object. Figure 8.1.7.2 presents the configuration
required to obtain such an example.

Figure 8.1.7.1: Arrow graphic object example.

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Graphics_Rectangle/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Graphics_Rectangle/Graphics_Rectangle_scene.html

8.1 2D Graphics 39

Figure 8.1.7.2: Arrow graphic example configuration. The hex color used for the example
is 8E44AD.

• expression: A text field where the two coordinates are entered. As mentioned before,
the last coordinate corresponds to the arrow’s spear.

• width: A text field in which the width of the arrow’s body is entered in px.

• spear: A text field in which the width of the arrow’s spear is entered in px.

• arrow: A button that launches the color editor, so that the user can select the inner
color of the arrow, since the color button at the top is related to its outer border.

Since the arrow graphic is very similar to the segment, no exercise is included for this
type of graphic object.

8.1.8 Arc graphic

This graphic consists of a part of a circle’s edge. The user only needs to provide the center,
radius, starting angle, and ending angle of the arc to be drawn. Figure 8.1.8.1 presents an
example of this type of graphic object. Figure 8.1.8.2 shows the configuration to get the
example.

40 The Graphics tab

Figure 8.1.8.1: Arc graphic object example.

Figure 8.1.8.2: Arc graphic example configuration. The hex color used for the example is
8E44AD.

• center: A text field in which the coordinates of the center of the arc are entered. For
example, (3,2) would imply the center is 3 units length to the right of the origin and
2 above it if the arc is set in coordinates relative to the cartesian plane.

• radius: A text field in which the arc’s radius is entered.

• init: A text field in which to enter the initial angle in degrees. The initial or starting
angle is the angle at which the arc starts being drawn.

• end: A text field in which the ending angle is entered in degrees. This angle is where
the arc stops being drawn.

• vectors: A checkbox that, when marked, alters the interpretation of the init and end
parameters. If it is marked, both these parameters should contain coordinates. Con-
sider these vectors as drawn starting at the point defined by the center parameter,

8.1 2D Graphics 41

and consider where they intersect the circle there centered an with a radius accord-
ing to the radius parameter. The arc will be drawn as that part of the circumference
subtended between those intersections. The vectors as such are not drawn, only the
arc.

• fill: A checkbox that, when marked, allows the arc to be filled with a color. The color
is selected by clicking the button at the right of the checkbox, which launches the
color tool, via which the user can choose the fill color. Note that, if the arc’s vector
functionality is used (defining the arc via vectors instead of angles), the area filled is
that contained between the vectors and the arc.

We do now an exercise to practice this functionality. This exercise’s interactive scene,
along with the instructions to build it, can be found at Graphics Arc. The interactive scene’s
document as such can be found at this link. All these files are also stored in the DescartesJS-
Documentation.zip file.

A few things are worth mentioning regarding this exercise. An arc is a more immediate
way to draw a part of a circumference, even if the same can be done using equation graphic
object. The arc’s vector functionality also allows to create an angle mark between lines if
the vectors defining the lines are known. Additionally, if a circumference is to be drawn
and its center and radius are known, it is better to draw it via the arc graphic object (a 360
degree arc) rather than via the equation one. It is actually easier for DescartesJS to draw it
using an arc.

8.1.9 Text graphic

This graphic object prints text as well as variables’ values. It can, for instance, display
instructions for a given exercise, explanations, questions, etc. It can even be used by a
scene’s developer in order to print values for debugging purposes.

In previous Descartes versions, this graphic object could only be handled using abso-
lute variables. Recent changes have endowed it with the possibility of using also relative
ones. Most of text’s functionality is explained in depth under the text editing tool topic.
Figure 8.1.9.1 presents an example of a printed text. Figure 8.1.9.2 shows the configura-
tion required to get this example. Figure 8.1.9.3 shows the Rich text edition window.

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Graphics_Arc/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Graphics_Arc/Graphics_Arc_scene.html

42 The Graphics tab

Figure 8.1.9.1: Text graphic object example.

Figure 8.1.9.2: Text graphic example configuration. Note that Rich text is being imple-
mented.

Figure 8.1.9.3: Rich text edition window that corresponds to Figure 8.1.9.2.

• expression: A text field where the coordinates of the text’s anchor point are entered.

8.1 2D Graphics 43

This anchor point can be placed in a position relative to the text via the anchor pa-
rameter described below.

• text align: A menu in which the the alignment of the text is selected for texts whose
width exceeds a specified length (specified via the text width parameter described
below) of px. If this happens, the text is wrapped around to another line, and the
manner in which the lines are aligned is defined by the menu. The options are left,
center, right and justify. This menu only makes sense when using plain text.

• anchor: A menu by which the text’s anchor point position is set relative to the text
itself. The text can be thought of as contained in an invisible rectangle. This menu
determines which point of this rectangle is to be the anchor in the expression pa-
rameter (whether it is the top left corner of the rectangle, or the top center point at
the middle of the rectangle’s upper side, etc.).

• text width: A text field in which the allowed width of the text in px is entered. It only
works when using plain text. This width, given in px, sets the maximum width the
plain text may have before wrapping it around to a new line. When using Rich text,
the line ends have to be determined by the user and manually entered. If the text
width parameter value is less than 20, it is ignored as if no width limit is set. When
using Rich text, this parameter should be set to 1.

• text border: When this checkbox is marked, a border is drawn around the text. The
border’s color can be selected via the color editor button right of the checkbox.

• border size: A text field where the text border’s width (in px) is set. If the text bor-
der checkbox is marked and the the border size is left at its default 0 value, the text
border’s size will be automatically determined by DescartesJS.

• shadow: When this checkbox is marked, a shadow is drawn as if behind the text. The
color of the shadow can be set using the color editor button right of the checkbox.
When this checkbox is marked, the following parameters can be used to further edit
the shadow’s properties:

– shadow blur: A text field in which the degree of blur is entered. A zero value is
associated with a shadow with very sharp edges. Increasing the value results in
more blurry shadows.

– shadow offset X: A text field in which an integer is entered, representing the
number of px the shadow will be horizontally placed relative to the text’s posi-
tion.

– shadow offset Y: A text field in which an integer is entered, representing the
number of px the shadow will be vertically placed relative to the text’s position.

Note that, when both offsets are at their default zero value, the shadow is places as if
it were right behind the text.

Let us do an exercise to practice the text graphic object. This exercise’s interactive
scene, along with the instructions to build it, can be found at Graphics Text. The inter-

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Graphics_Text/index.html

44 The Graphics tab

active scene’s document as such can be found at this link. All these files are also stored in
the DescartesJSDocumentation.zip file.

8.1.10 Image graphic

This graphic object can be a jpg, png, gif, svg (scalable vector graph), or webp image. webp
images work ok in all browsers; and in Safari they are only correctly displayed in the ma-
cOS Big Sur version and later. Figure 8.1.10.1 presents an example of an image. Figure
8.1.10.2 shows the configuration required to get this example. Note that, for these exam-
ples to be reproduced, the scene’s html file has to be already saved, and the image used in
this example should be stored in an folder labeled images placed at the same level where
the interactive scene’s html file is saved; and the image’s name should be 1.png. The image
file is the one included in the exercise at the end of this topic.

Figure 8.1.10.1: Image graphic object example.

Figure 8.1.10.2: Image graphic example configuration.

• expression: A text field that contains the coordinates where the image is to be an-
chored. By default, the expression consists of two numbers separated by commas

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Graphics_Text/Graphics_Text_scene.html

8.1 2D Graphics 45

and flanked by parentheses. These numbers correspond to the horizontal and ver-
tical coordinates of the image’s top left corner. However, four numbers can be also
used (separated by commas as well). In this case, the first two numbers correspond
to the horizontal and vertical coordinates of the image’s center, and the last two
numbers correspond the horizontal and vertical scale factors. If the scale factors are
both 1, the size of image will be preserved. However, horizontal and scale factor val-
ues may differ, resulting in images that not necessarily preserve the image’s original
aspect ratio. Scale factors can also admit negative values. For instance, a horizontal
scale factor of -2 will produce an image that horizontally is a mirror image of the
original one, and has a width twice the size of the image’s original width.

• file: A text field in which the image’s path and name are entered. The path should be
entered relative to the interactive scene’s html file. the / character is used to separate
folders. Folders above the scene’s file (folders containing the folder in which the html
file is stored) can be accessed using a double dot (..). For instance, ../image.png.

• rotation: A text field in which the rotation angle (in degrees) is entered.

• opacity: A text field accepting a value between 0 and 1. A 0 value corresponds to
minimum opacity (maximum transparency), while a 1 value (the default value) cor-
responds to a completely opaque image (null transparency).

• clipping region: A text field where an expression of the form (x,y,width,height)

is entered. The user can use such an expression to allow only the clipped area of the
image to be shown. x and y correspond to the clipped area’s top left corner, while
width and height correspond to the clipped area’s width and height relative to the
top left corner.
For example, consider a 300px×150px image. If, both horizontally and vertically,
only the central third of the image were to be shown (the central area of the im-
age if it were in a 3×3 grid), the clipping region parameter would have to be set to
(100,50,100,50). This expression takes, horizontally, from 100px to 200 px (the
middle third) and, vertically, from 50px to 100px (the middle third).

We are now ready for an exercise to practice the use of this graphic object. This exer-
cise’s interactive scene, along with the instructions to build it, can be found at Graphics
Image. The interactive scene’s document as such can be found at this link. All these files
are also stored in the DescartesJSDocumentation.zip file.

This exercise shows how to include images inside interactive scenes. The size and as-
pect ratio of these images can also be modified. Bear in mind that, though all these aspects
are controlled by numbers in the exercise, variables can be used in their stead, so that the
image can effectively be controlled dynamically.

Again, it is important to remember that, for an image to be displayed in an interactive,
the interactive scene’s html file has to be first saved with the path to the image set. It may
be necessary to then reload the interactive scene, so that the path is refreshed and the
image shown.

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Graphics_Image/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Graphics_Image/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Graphics_Image/Graphics_Image_scene.html

46 The Graphics tab

The image of a DescartesJS space: An image can be generated from whatever is viewed
of a particular DescartesJS space. This is achieved by considering, as the image’s name, the
space’s identifier with a .image suffix. Take, as an example, a space with an E1 identifier.
Over this space, consider an E2 space covering it. E1 has some graphic objects in it (curves,
texts, etc.). If an image type graphic is created in E2, and its file parameter has E1.image
in it, an image of what is viewed in E1 is shown in E2. It follows all the rules laid out before
(scaling, rotating, etc.). And, if the E1 graphics change (for instance, if they are controlled
via variables that change value), the image projected in E2 will change as well. All this
is particularly useful when, for instance, one needs a dynamic image made up of various
graphic objects. And, if this image needs to repeat itself, the user can also use the family
functionality of the image to create multiple instances of the E1 space image.
In order to project a space as an image, this space should be below the space in which it
is projected as an image (the projected space should appear above the space in which it is
projected in the Spaces list panel at the left).
Additionally, even though graphics in the space being projected are displayed in the pro-
jected image, the space’s background, border, etc. are not.

8.1.11 Macro graphic

A macro is a text file that includes parts of a DescartesJS scene, specifically from the Defi-
nitions, Programs and Graphics tabs. In order to generate such a file, one must first have a
DescartesJS scene saved which includes the elements to be used in the macro.

Figure 8.1.11.1 presents an example of a macro in use. Figure 8.1.11.2 shows the con-
figuration necessary to get this example. The macro used in this example can be found in
a macros folder, which is stored at the same level as the scene’s html file. The name of the
text file is macr.txt. The arrow shown in the cartesian plane is not present in the Graphics
tab of the scene; it is really being read from the macro.

Cabe notar dos cosas importantes. Aunque el macro viene incluido como un gráfico,
realmente va más allá de solamente manipular gráficos. Recordemos que involucra tam-
bién los elementos de Definiciones y Programa. Por otra parte, existe un macro en el se-
lector Gráficos y otro en el selector Gráficos 3D. Los dos funcionan de manera muy similar,
aunque hay diferencias leves en los parámetros de cada uno. Sólo se abordarán los macros
en dos dimensiones en la presente documentación, dado que las diferencias entre ambos
se explican solas.

• file: A text field which includes the path and name of the macro text file. The path
is relative to the folder where the scene’s html file is saved. Remember the / symbol
is used to access folders below the scene’s file folder (i.e., folder contained in that
folder). For a macro to work, its text file has to be stored inside the folder containing
the interactive scene’s html file, or in a subfolder therein.

• rotation: A text field where a number or variable representing a rotation angle in
degrees is entered. The macro will be rotated by such angle.

8.1 2D Graphics 47

Figure 8.1.11.1: Macro graphic object example.

Figure 8.1.11.2: Macro graphic example configuration.

• position: A text field containing a coordinate. This coordinate will be where the
macro’s top left corner is to be placed. The pair of numbers is flanked by square
brackets instead of parentheses.

• name: A text field for the name assigned to the macro. When a non graphic ele-
ment (for instance, an element from the Definitions or Programs tabs) of the macro
is to be called, its prefix should include the name of the macro followed by a pe-
riod, and then the name of the definition on program element. For example, say
you habe a macro named mcr which has a distance() function in it. If such a func-
tion is to be called in the main scene that contains the macro, it should be called as
mcr.distance().

The File menu in the main DescartesJS editor includes an Export option. It has a
Descartes macro option in the submenu. When this option is selected, a pop-up window
is launched in which the user can select the folder where the macro is to be saved and the
name for it.

A macro can be used to simplify the design of subsequent scene’s that all share certain
features. For instance, say a same border design (comprised of various graphic objects) is

48 The Graphics tab

to be implemented in very many different scenes, each being saved as a different html file.
The border design can then be exported as a macro. This macro can then be imported by
each individual scene file. This means it is not necessary to repeat the code in each scene;
only one copy of the code is stored in the macro, and all the scene’s take it from there.

Additionally, it is possible to pass information from the main scene containing the
macro down to variables included within the macro. This is achieved via assignments
done in the main scene. If, for instance, the user wants to set a 2 value for a wdth variable in
a macro named macr via the main scene, the assignment should be made as macr.wdth=2.
The wdth value within the macro will then be 2.

We can now do an exercise to practice the use of the macro graphic object. This exer-
cise’s interactive scene, along with the instructions to build it, can be found at Graphics
Macro. The interactive scene’s document as such can be found at this link. All these files
are also stored in the DescartesJSDocumentation.zip file.

This exercise allows us to see the use of a macro as a sort of graphic template that can
be used across of a multitude of different scenes, without needing to include the template’s
specific code in each. In this brief example, the template consists of only four triangles.
But in a more professional template, it could rise up to 20 different graphic elements. It is
certainly better to have only one copy of these elements in one place, instead of repeating
this code resulting in files of larger size than needs be.

It is important to bear in mind that, in order for graphic macro elements to be dis-
played correctly in an importing scene, this last scene should have a space with the same
name as that that housing the graphic elements inside the macro.

Note that, in the exercise, it was possible to control the value of a variable in the macro
directly from the main scene. That is particularly useful to tweak aspects of the graphic
elements’ behavior without having to edit the macro itself.

It is sometimes necessary to manually edit a macro’s text file. For example, when the
elements exported were more than are really needed in the macro, the user can manually
remove the surplus ones. It should be stressed, however, that such editions should be car-
ried out using a text editor which allows to save in UTF-8 coding, preferably without BOM.
This will ensure that the macro will not have any hidden characters that would render it
unreadable by DescartesJS. All this is addressed more in depth under the library definition
topic.

8.1.12 Sequence graphic

This graphic object consists of a series of points that represent a mathematical sequence.
A DescartesJS mathematical sequence requires a parameter that takes its values from a
domain specified by the user. This parameter is used in the expression for the horizontal
and vertical coordinates of the points. These coordinates are handled as ordered pairs.

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Graphics_Macro/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Graphics_Macro/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Graphics_Macro/Graphics_Macro_scene.html

8.1 2D Graphics 49

Figure 8.1.12.1 presents an example of a sequence. Figure 8.1.12.2 shows the configura-
tion required to set this example. Note that, in order to view all the point printed for the
sequence, the cartesian plane has to be panned by clicking and dragging.

Figure 8.1.12.1: Sequence graphic object example.

Figure 8.1.12.2: Sequence graphic example configuration. The hex color used for the ex-
ample is 8E44AD.

• expression: A text field with the sequence’s expression as an ordered pair. Its default
value is (n,1/n). This means the first point (for which n=1) will be at (1,1/1), or (1,1).
Its second point (for which n=2) will be at (2,1/2), or (2,0.5). And so on. Note that
the values for n are taken from the domain parameter of the sequence, described
below.

• visible: A checkbox which, when marked, makes the scene print out the sequence’s
correspondence rule (found in the sequence’s expression parameter) inside the in-
teractive. It is printed in the lower part of the space where the sequence is housed.

• editable: A checkbox which, when marked, allows the user to also modify the corre-
spondence rule printed out when the visible checkbox is marked, thus enabling the
sequence to change dynamically when the printed expression is modified.

50 The Graphics tab

• domain: A text field where the sequence’s domain is entered. Its default value is
[1,100], meaning that the values n will adopt are the integers from 1 to 100.

This exercise’s interactive scene, along with the instructions to build it, can be found
at Graphics Sequence. The interactive scene’s document as such can be found at this link.
All these files are also stored in the DescartesJSDocumentation.zip file.

8.1.13 Fill graphic

This graphic is a color that fills an area defined by bordering graphic objects.

Many graphic objects have their own fill parameter. However, sometimes it is neces-
sary to color areas flanked by graphic objects, but that not necessarily belong to a specific
graphic object fill. That is, areas between objects. Figure 8.1.13.1 presents an example of
this graphic. Figure 8.1.13.2 shows the configuration required for this example. Note that
the area to be filled is limited by a hyperbole with the equation y2 − x2 = 1. The reference
point for the fill is the origin (0,0), as stated in its expression parameter, so the search for
the area to fill starts there.

Figure 8.1.13.1: Fill graphic object example.

Figure 8.1.13.2: Fill graphic example configuration. The hex color used for the example is
8E44AD.

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Graphics_Sequence/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Graphics_Sequence/Graphics_Sequence_scene.html

8.2 3D graphics 51

• expresión: A text field in which the reference point coordinates of the fill is set. This
point lies inside the area to be filled.

Let us do an exercise involving various geometric shapes that cross each other, and
how the fill graphic object can be used to color an area flanked by these shapes. This ex-
ercise’s interactive scene, along with the instructions to build it, can be found at Graphics
Fill. The interactive scene’s document as such can be found at this link. All these files are
also stored in the DescartesJSDocumentation.zip file.

This exercise shows us the usefulness of this type of graphic object to color areas made
up of various shapes that may or not cross each other. You can think of the fill as paint
being dropped on the point given by the fill’s expression parameter, which then spreads
until it finds a border it cannot cross. And it is particularly important to bear in mind that,
for an object to effectively serve as a fill limit, it needs to be defined before the fill in the list
of graphic objects, and has to also be drawn (the value of the object’s draw if parameter
has to be 1).

8.2 3D graphics

As expected, these graphics can only be drawn in 3D spaces. Since a default DescartesJS
scene opens with only one 2D space, the user will need to add a 3D space in the Spaces to
be able to draw the graphic objects described below. Additionally, given that many graphic
objects are generic, or their configuration can be completely understood by means of the
figures presented for them, only one exercise is included.

8.2.1 Segment graphic

It is a segment in three dimensions. Which means each extreme is a three dimensional
coordinate.

Figure 8.2.1.1 presents an example of a three-dimensional segment. Figure 8.2.1.2
shows the configuration necessary for the example. In the configuration editor, only the
last segment of three is seen (a segment along the z axis). However, the other two seg-
ments go along the other remaining coordinate axes (x and y). Each segment is 2 units
length long. So, drawing these segments is a means to both locate the origin and know the
space’s orientation. We therefore include all these axis-representing segments in all the
other 3D graphic objects’ examples.

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Graphics_Fill/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Graphics_Fill/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Graphics_Fill/Graphics_Fill_scene.html

52 The Graphics tab

Figure 8.2.1.1: 3D Segment graphic object example.

Figure 8.2.1.2: 3D Segment graphic example configuration.

8.2.2 Point graphic

Three dimensional version of a point. Its expression parameter therefore admits a three
dimensional coordinate.

Figure 8.2.2.1 presents an example of a three dimensional point. Figure 8.2.2.2 shows
the configuration required for the example.

8.2 3D graphics 53

Figure 8.2.2.1: 3D Point graphic object example.

Figure 8.2.2.2: 3D Point graphic example configuration. The hex color used for the exam-
ple is 8E44AD.

• offset: A text field where the offset of a text accompanying a point is entered. This
offset is the number of px of separation between the text and the point. The direction
of this separation is entered in the angle parameter below.

• angle: A text field where the direction of the separation entered in the offset param-
eter is entered as an angle in degrees.

8.2.3 Polygon graphic

It is very similar to its two dimensional counterpart, except that the vertex coordinates
(those provided in the expression parameter of the graphic) are, in this case, three dimen-

54 The Graphics tab

sional coordinates.

Figure 8.2.3.1 presents an example of a 3D polygon. Figure 8.2.3.2 shows the configu-
ration necessary for the example. Note that, for polygons with more than 3 vertices, these
need not lie in a same plane.

Figure 8.2.3.1: 3D Polygon graphic object example.

Figure 8.2.3.2: 3D Polygon graphic example configuration. The hex color used is 8E44AD.

8.2.4 Curve graphic

This graphic is also very similar to its 2D counterpart. However, the expression parameter
includes three assignments: one for x, another for y and another for z, each separated by
the next by a space. The parameter of the curve is u, with a value range in [0,1].

Figure 8.2.4.1 presents an example of the 3D curve. Figure 8.2.4.2 shows the configura-
tion required for the example.

8.2 3D graphics 55

Figure 8.2.4.1: 3D Curve graphic object example.

Figure 8.2.4.2: 3D Curve example configuration. The hex color used is 8E44AD.

The configuration of a curve requires a value for a Nu parameter: the number of smaller
intervals in which the [0,1] interval for the u parameter is broken into. A small value will
result in curves made up of segments. A larger value will result in a better resolution for the
curve. However, excessively large values may result in a slow rendering of the interactive
scene.

8.2.5 Triangle graphic

This graphic object is basically a three sided polygon. Its expression parameter contains
three coordinates, one for each vertex. Each coordinate is, as expected, a three dimen-
sional coordinate.

Figure 8.2.5.1 presents an example of a 3D triangle. Figure 8.2.5.2 shows the configu-
ration required for this example.

56 The Graphics tab

Figure 8.2.5.1: 3D Triangle graphic object example.

Figure 8.2.5.2: 3D Triangle graphic example configuration. The hex color used is 8E44AD.

8.2.6 Face graphic

This graphic is basically a 2D polygon that can then be rotated in a 3D space. Since it is
a 2D polygon, its expression parameter consists of a sequence of two dimensional coordi-
nates (ordered pairs), as many as the number of vertices the face has. After its shape has
been defined, the inirot, inipos, endrot, and endpos parameters can be used to rotate it
and shift its position. If all these parameters keep their 0 default value, the face lies in the
xy plane, as expected. The other rotation and shift parameters are dealt with in depth in
the common 3D graphic parameters topic.

It is also possible to enter three dimensional coordinates for the vertices in the expres-
sion parameter. The face can then be drawn ignoring the shift and rotation parameters.
However, these vertices must then be coplanar (they should all lie in the same plane). If
this condition is not met, the face will not be drawn as expected, since this graphic object
is not really three dimensional (it is a two dimensional object that lives in a 3D space).

8.2 3D graphics 57

Figure 8.2.6.1 presents a face graphic example. Figure 8.2.6.2 shows the configuration
necessary for this example. In this example, the first approach was taken to draw the face
(i. e., the two dimensional coordinates for the vertices). Note that there is non zero rota-
tion present for the graphic in the inirot parameter.

Figure 8.2.6.1: 3D Face graphic object example.

Figure 8.2.6.2: 3D Face graphic example configuration. The hex color used is 8E44AD.

8.2.7 Regular Polygon graphic

This graphic object defines a regular polygon with a given number of sides. It is drawn by
default in the xy plane, centered in its origin, and its very first vertex on the x axis. It can
nevertheless then be shifted and rotated in 3D. The parameters used to shift and rotate it
are discussed in depth in the common 3D graphic parameters topic.

Figure 8.2.7.1 presents an example of a 3D regular polygon. Figure 8.2.7.2 shows the
example’s required configuration. Note that the number of sides of the polygon is deter-
mined by the Nu parameter. Also note that the inirot and inipos are used to rotate and
shift the polygon, so it leaves its default xy plane.

58 The Graphics tab

Figure 8.2.7.1: 3D Regular Polygon graphic object example.

Figure 8.2.7.2: 3D Regular Polygon graphic example configuration. The hex color used is
8E44AD.

8.2.8 Surface graphic

This graphic object consists of a surface drawn using two parameters: u and v, each of
which draws its values from the [0,1] interval. The Nu parameter is used to set the number
of partitions of the [0,1] interval for the u parameter, whereas Nv is used for the v param-
eter.

The expression parameter of a surface is a text field with an assignment for x, one for
y, and one for z; each separated by a space. These may use the u and v variables that
parametrize the surface.

Figure 8.2.8.1 presents an example of a surface. Figure 8.2.8.2 shows the examples re-
quired configuration.

Note that the assignments in this example’s expression parameter use the u and v pa-
rameters for x and y. z is then defined as a function of x and y. x = 3cos(2πu)sin(π2 v),

8.2 3D graphics 59

y = 3sin(2πu)sin(π2 v), y z = cos(3
√

x2 + y2). x and y are defined by means of cylindrical
coordinates. This endows the surface with a round edge. The square root of the sum of
the square of the x and y values in the assignment for z involves a distance from from the z
axis. And, since it is the argument of a cosine function, this configuration altogether gives
the surface a wavelike nature.

Figure 8.2.8.1: 3D Surface graphic object example.

Figure 8.2.8.2: 3D Surface graphic example configuration. The hex color used is 8E44AD.

8.2.9 Text graphic

It works in very much the same way as its 2D counterpart. However, in 3D, texts are not
allowed to leave traces. That is the reason for the missing trace checkbox. Also, since these
type of texts are not housed in a 2D space, their position cannot be defined relative to a
cartesian plane. They therefore only use absolute coordinates, which is the reason for the
missing abs coord checkbox in 3D texts.

60 The Graphics tab

8.2.10 Macro graphic

This graphic object is very similar to the 2D macro. A difference, though, is that the text
field where the path and name to the macro text file is the expression parameter, instead
of the file one in 2D.

Please note that, in order for a macro to display its graphic objects correctly in 3D,
the scene importing the macro has to have a 3D space with the same identifier as the
one housing the macro’s graphic objects. For instance, if the macro’s graphic objects were
generated in a 3D space with an E2 identifier, when the macro is imported in another
scene, it should also have a space with the E2 identifier. Otherwise, the macro’s graphics
will not be displayed.

8.2.11 Cube graphic

The cube graphic object is defined by the width parameter, which is the length of an inner
diagonal (the segment spanned by two completely opposing vertices of the cube). Once
the width of the cube is given, the cube’s side can be calculated dividing the width by

p
3.

It can also be reoriented and shifted using the shift and rotation parameters described in
the common 3D graphic parameters.

Figure 8.2.11.1 presents an example of a cube. Figure 8.2.11.2 shows the example’s
required configuration. Note that the example involves a rotated cube, since the inirot
parameter does not have its default value.

Figure 8.2.11.1: Cube graphic object example.

8.2 3D graphics 61

Figure 8.2.11.2: Cube graphic example configuration. The hex color used is 8E44AD.

8.2.12 Box graphic

Similar to the cube, but with the exception that all three defining sides of this object can
be defined separately. These are defined via the length, height and width parameters.

Figure 8.2.12.1 presents an example of a box graphic object. Figure 8.2.12.2 shows the
configuration necessary for the example. Note that the box in this example is rotated, since
the inirot parameter does not have its default value.

Figure 8.2.12.1: Box graphic object example.

62 The Graphics tab

Figure 8.2.12.2: Box graphic example configuration. The hex color used is 8E44AD.

8.2.13 Tetrahedron, Octahedron, Dodecahedron and Icosahedron

These graphics are pre-designed polyhedrons. The only unique parameter they have is
their width one, which determines their sizes. As with the cube, the width is the length
spanned by two opposing vertices of the polyhedron in question. Once defined, its place-
ment can be changed via the shifting and rotation parameters discussed in the common
3D graphic parameters topic.

Figure 8.2.13.1 presents an icosahedron as an example of a polyhedron. Figure 8.2.13.2
shows the configuration required for this example. Note that the object does not appear
centered in the origin, since the inipos parameter has been changed from its default value.

Figure 8.2.13.1: Icosahedron graphic object example.

8.2 3D graphics 63

Figure 8.2.13.2: Icosahedron graphic example configuration. The hex color used is 8E44AD.

8.2.14 Sphere graphic

The sphere is defined by the width parameter, in which its diameter is entered. The sphere
is rendered depending on the number of meridians and parallels assigned to it. The num-
ber of parallels is specified in the Nu parameter, whereas the number of meridians in the
Nv parameter. The higher their values, the more the graphic will resemble a true sphere.
However, very high values for these parameters may result in a long time required to ren-
der and refresh the scene.

Figure 8.2.14.1 presents an example of a sphere. Figure 8.2.14.2 shows the configura-
tion required for the example.

Note that the parallels and meridians of the sphere in the example have a higher con-
trast and can be easily identified. This responds to the mark placed on the edges check-
box. Note also that the sphere is set to have 7 meridians and 15 parallels. Furthermore,
the sphere seems tilted (its axis does not lie along the z axis). This is because the inirot
parameter includes a rotation using Euler angles. The shifting and rotation parameters
are discussed in depth in the common 3D graphic parameters topic.

64 The Graphics tab

Figure 8.2.14.1: Sphere graphic object example.

Figure 8.2.14.2: Sphere graphic example configuration. The hex color used is 8E44AD.

8.2.15 Ellipsoid graphic

The ellipsoid is defined by three parameters: length, height and width. In a sense, it can be
thought of as a an ellipsoid constrained outside by a 3D box graphic. The ellipsoid’s res-
olution is controlled by the Nu parameter, which corresponds to the number of parallels
involved, and the Nv parameter, which controls the number of meridians.

Figure 8.2.15.1 presents an example of the ellipsoid. Figure 8.2.15.2 shows the config-
uration required for the example. Note that a certain amount of transparency (77 in hex)
has been added to the graphic object’s color. Additionaly, white edges are implemented
via the edges checkbox, so as to stress the effect of the Nu and Nv parameters.

8.2 3D graphics 65

Figure 8.2.15.1: Ellipsoid graphic object example.

Figure 8.2.15.2: Ellipsoid graphic example configuration. The hex color used is 8E44AD,
with a hex transparency of 77.

8.2.16 Cone graphic

A cone shaped graphic whose base can be an ellipse or circle. By default, its vertex points
downward (towards the negative z axis), and its center is at the origin. The ellipse base is
defined by the width parameter (along the x axis by default) and the length one (along the
y axis by default). The height parameter contains the distance from the base to the cone’s
vertex (along the z axis). As with the sphere graphic object, it also has a Nu parameter,
related to the number of “parallels”, and a Nv one related to the “meridians”.

Figure 8.2.16.1 presents an example of a cone. Figure 8.2.16.2 shows the configuration
necessary for the example.

Note the edges checkbox of the graphic is marked and set to draw them white, to better
view the effect of the Nu and Nv parameters. Also, the number of parallels is set to 10

66 The Graphics tab

(10 edges dividing the cone’s height), and the number of meridians is set to 14. As seen
in the inirot parameter, the cone is rotated half a turn (180°) around the x axis in order
for it to appear base down. The cone’s center has additionally been shifted 1 unit towards
the positive x axis and 1 unit towards the positive z axis, which can be seen in the inipos
parameter.

Figure 8.2.16.1: Cone graphic object example.

Figure 8.2.16.2: Cone graphic example configuration. The hex color used is 8E44AD.

8.2.17 Cylinder graphic

A cylindrical whose perpendicular cross section can be an ellipse. By default, it appears
with its center at the origin and both its bases parallel to the xy plane. It includes a width
parameter in which is used to enter its thickness along the x axis. The length parameter is
used to enter its thickness along the y axis, and the height parameter is used to enter its
thickness along the z axis. As with for other graphics, the Nu parameter holds the number
of “meridians” of the graphic object (in a sense, the number of partitions into which the

8.2 3D graphics 67

angular parameter of the figure is broken). The Nv parameter specifies the number of
“parallels” (or subdivisions in the z axis direction) that are used when drawing it.

Figure 8.2.17.1 presents an example of a cylinder. Figure 8.2.17.2 shows the configura-
tion required for the example.

Note the edges checkbox is marked, and that the color chosen for them is white, to
better display the role of the Nu and Nv parameters. Also, the object has been rotated
45°around the x axis and another 45°around the y one (as can be seen in its inirot param-
eter). It therefore appears tilted. The color used has a little transparency to better locate it
with regards to the coordinate axes.

Figure 8.2.17.1: Cylinder graphic object example.

Figure 8.2.17.2: Cylinder graphic example configuration. The hex color used is 8E44AD,
with a 77 hex value transparency.

68 The Graphics tab

8.2.18 Torus graphic

A torus is a doughnut shaped figure. It can be seen as the solid of revolution obtained
by rotating a circle around an axis also in the circle’s plane. The R parameter of the torus
indicates the radius of rotation (the distance between the circle’s center and the axis of ro-
tation). The r parameter is the radius of the circle. The Nu parameter indicates the number
of subdivisions into which the rotation parametrization angle (the one related to the rota-
tion of the circle around the axis) is to be broken. The Nv parameter indicates the number
of subdivisions into which the circle’s angle is to be broken. Once again, higher values for
these parameters result in a smoother surface, but may involve slower rendering.

Figure 8.2.18.1 presents an example of a torus. Figure 8.2.18.2 shows the configuration
required for this example.

Note the edges checkbox is marked, and the custom gray color is used to draw them.
Additionally, the color is considerably transparent, since we with to be able to see the axes
behind the figure to better understand its placement.

Figure 8.2.18.1: Torus graphic object example.

8.3 Parameters common to 2D graphic objects 69

Figure 8.2.18.2: Torus graphic example configuration. The hex color value is 8E44AD, with
an AF hex value for its transparency.

8.2.19 3D graphics general exercise

We should do an exercise representing the most general aspects of all 3D graphic objects.
We will use the ellipsoid. This exercise’s interactive scene, along with the instructions to
build it, can be found at Graphics 3D. The interactive scene’s document as such can be
found at this link. All these files are also stored in the DescartesJSDocumentation.zip file.

This exercise shows the general functionality shared by most 3D graphics. The imple-
mentation of rotations and position shifts is noteworthy. Though some objects (a 3D face,
for instance) could be built by specifying their individual coordinates, it would take a con-
siderable amount of time and effort which can be saved by using rotations and shifts. This
exercise shows also the usefulness of having an initial rotation, followed by an initial po-
sition shift, followed then by a second rotation; since the second rotation is implemented
on the already shifted object.

When using 3D graphic objects, it is always good practice to display the segments rep-
resenting the coordinate axes in order to better see the objects’ position in space. They
are, in this sense, used for debugging purposes. They can be deleted afterwards, or simply
hidden via their draw if parameter.

We suggest that the user practice adding and editing figures. Also, it is important to
notice the effect of marking the split checkbox when figures overlap. Finally, the different
options in the model menu may provide better or clearer displays of the objects involved,
depending on the purpose they are used for.

During these examples and in the exercise, the objects’ color properties were edited.
Remember that more information about this can be found in the color editor topic.

8.3 Parameters common to 2D graphic objects

• spaces menu: A menu labeled space which shows the 2D spaces available where
the graphic object may be lodged. This menu determines where to put the graphic

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Graphics3D/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Graphics3D/Graphics3D_scene.html

70 The Graphics tab

object. There is another menu near the top of the panel listing the available graphics
at the left of the Graphics tab. That other menu is used to filter and display in the list
only the graphics in the selected space.

• background: A checkbox that, when marked, means that the graphic object in ques-
tion will only be drawn once, when the scene initially loads. Any subsequent changes
in the values of variables that may control the graphic (for instance, its shape or posi-
tion) will not be evident. The graphic can therefore be thought of as being part of the
background (hence the checkbox’s name). Objects that are not intended to change
should be left as background ones, since no time will be wasted re-rendering them.
It can also reduce the scene’s loading time.
NOTE: A graphic object with a mark in its background checkbox may still refresh
itself. This happens only when the spaces scale is changed, or when its origin is
shifted. Therefore, another way to understand the function of the background check-
box is that it disables the graphic object’s re-rendering via controls or variables that
affect the object itself, but it does not disable it when the containing space’s config-
uration changes.

• draw if: A text field in which a boolean condition is entered. If the condition turns
out to be true, it adopts a 1 value and the graphic object will be displayed. Other-
wise, it adopts a 0 value and the graphic object will not be displayed.
For example, if an a variable has a value of 3, and draw if has a==2, the graphic ob-
ject will be hidden. This happens because a is compared to 2, and it turns out a is
not 2. The condition is then false, and the graphic is not displayed. However, if a
were to change to 2, the object would be drawn.
A more in-depth discussion of boolean conditions can be found in the boolean con-
ditions and operators topic. It is also important to notice that this draw if parameter
is present not only in graphic objects, but in spaces and controls as well.

• abs coords: When this checkbox is marked, the graphic is drawn in absolute coordi-
nates. These are measured in px units. The horizontal component of the coordinates
is the px distance to the right of the left margin of the space, while the vertical com-
ponents is the px distance below the top margin.
If the checkbox is not marked, the coordinates will be interpreted as relative to the
space’s cartesian plane. In this situation, the graphic objects will respond to changes
in the space’s offset and scale. An important difference to be expected is that, when
using absolute coordinates, increasing the value of the vertical component results
in shifting the object downwards, whereas when using relative ones, the shift is di-
rected upwards.

• text: A text field, along with its T and Rtf buttons (these buttons launch the plain
text and Rich text text windows, respectively) in which a text can be entered. The
text is associated to the graphic in question. For example, a segment’s text will be
displayed near the segment’s midpoint. A more in-depth explanation of text enter-
ing and edition can be found in the text editing tool topic.

8.3 Parameters common to 2D graphic objects 71

• decimals: A text field in which a positive integer is entered. It is read as the number
of decimals to be printed in the graphic related text, when it is used to print numer-
ical values. If the value has more decimals than allowed by the decimals parameter,
the value will be rounded so that the allowed number of decimals is respected.

• fixed: A checkbox next to the decimals parameter. When marked, the value will al-
ways display the number of decimals allowed, whether they are significant or not.
If unmarked, the decimals will only be displayed when they are significant and are
allowed by the decimals parameter.

• font: A menu with 3 options: SansSerif, Serif and Monospaced. It is used to set the
font style of the text accompanying the graphic object. It is therefore present only in
graphics that can have such a text.

• font size: A text field where the size of the font is entered. This affects the text ac-
companying a graphic.

• bold: When this checkbox is marked, the text accompanying the graphic object will
be printed in bold style.

• italic: When this checkbox is marked, the text accompanying the graphic object will
be printed in italics.

• trace: When this checkbox is marked, the graphic object will leave a trace of its posi-
tions. This is used for graphic objects that are defined via variables. When the vari-
ables change values, the positions or configuration of these graphics may change.
If the checkbox is marked, a trace of the objects’ visited positions will be left. The
checkbox has color editor button next to it, which can be used to set the color of the
trace.

• family: When this checkbox is marked, copies of the graphic can be displayed de-
pending on the family’s parameter, the value interval associated with that parame-
ter, and the steps used to form the family. These are described below, and are only
active when the family checkbox is marked.

• parameter: A text field where the variable used as the family’s parameter is entered.
The values this variable adopts are taken by dividing the interval in a number of
equal parts. The number of separations between these equal parts corresponds to
the number indicated in the steps.

• interval: A text field with an interval. The interval consists of a couple of values
(or variables) indicating the beginning and end of the interval. They are flanked by
square brackets and separated by a comma. The first value corresponds to the first
value the family parameter will adopt. The second value of the interval corresponds
to the last value the family parameter will adopt.

• steps: A text field where a positive integer is entered, corresponding to the number
of separators dividing the equal parts of the interval.

As an example, consider an s family parameter, a [1,11] interval, and 4 steps. The in-
terval measures 11-1=10, which is then divided so that there are 4 divisions between

72 The Graphics tab

its equal parts. It therefore has to be divided into 5 equal parts, each measuring
2 units. The first value s has is then 1, then 1+2=3, then 1+4=5, then 1+6=7, then
1+8=9, and finally, 1+10=11 (which corresponds to the intervals second number).

• width: A text field which contains the width of the graphic’s line in px. This width is
the thickness of the line or curve being drawn, and should therefore not be confused
with the width of some graphic objects such as the rectangle.

• info: A text field where a brief description of the graphic, or what it does, can be
included. This is optional, and this field can be left empty. However, when having
multiple graphics of the same type involved, it may be useful to further describe
them so as to more quickly locate a particular one. The description entered is also
displayed in the list at the graphic objects left list panel.
NOTE: this feature is also present in almost all other DescartesJS elements: spaces,
controls, definitions, and programs.

• line style: A menu with 3 options. It is used to determine how the line of some
graphic objects is to be drawn. The solid option results in a continuous line. The
other two options result in a non-continuous line (dots and dashes).

8.4 Parameters common to 3D graphic objects

We now discuss the parameters that are common to most three dimensional graphic ob-
jects. The list includes only those parameters which have not been explicitly described in
particular graphic objects.

• back color: A button that launches the color editor, which can then be used to assign
a 3D object’s back color. Since 3D objects have a front and a back, the first color
button described sets the front. This back color can be used to set the same or a
different color for the back side.

• inirot: A text field in which three numbers are entered. They are flanked by paren-
theses and separated by a comma. These numbers define an initial rotation of an
object. The first number is the angle, in degrees, of a rotation around the x axis. The
second is around the y axis. The third is around the z axis.
In some situations, a different kind of rotation may be more helpful, known as an
Euler rotation. In these rotations, the first number corresponds to the angle of rota-
tion in degrees of a first rotation around the z axis. The second number is then the
rotation around the x axis (which, if non-zero, would result in a change in a new z
axis). The third number is then a last rotation again around the new z axis. If such a
rotation type is to be entered, an Euler prefix has to be added before the first paren-
thesis. For instance, Euler(10,20,10).

• inipos: A text field with a three dimensional vector (three numbers flanked by paren-
theses and separated by commas) that corresponds to the initial position or shift
given to the objects default position. As usual, the first number is the x coordinate,

8.4 Parameters common to 3D graphic objects 73

the second is the y coordinate, and the third one the z coordinate. This position shift
is performed after the initial rotation has been implemented.

• endrot: A text field that works exactly as the inirot parameter. However, the rota-
tion here entered takes place after the initial position shift has been implemented.
And the rotation fulcrum is also the origin, so if an object has been shifted from the
origin, this rotation will also result in further shifting the object.

• endpos: A text field that works exactly as the inipos parameter. Its position shift
occurs after the end rotation has been implemented.

The user can take advantage of the order in which these rotations and position shifts
occur. They allow for an easier positioning of certain objects.

• split: When this checkbox is marked, three dimensional objects that overlap are
carefully drawn so as to consider which parts of them appear in the before or at the
back of others from the viewer’s perspective. This allows for a better presentation
of the intersections. This option should only be used when objects will potentially
cross each other, since it involves more calculations that may impact the scene’s per-
formance.

• edges: When this checkbox is marked, the edges defining certain objects are drawn
in a specific color. This color is chosen via the color editor button located next to the
checkbox. The edges are related to the Nu and/or Nv parameters of the custom 3D
graphic objects.

• model: A menu with four options related to how a 3D object is drawn:

– color: uses a fixed color for the object.

– light: provides a sense of illumination. It acts as if a light source were present.
The color given to the object may vary in brightness depending on the orienta-
tion of its parts.

– metal: works similar to the light option, but enhances the contrast of the bright
spots, endowing the surfaces of the objects with a metallic condition.

– wire: Used to draw only the edges of the object with the color selected via its
accompanying color editor button. The faces of the objects are not drawn.

• Nu: A text field in which a positive integer is entered. For graphic objects which
depend on a u parameter, the number here entered determines the number of parts
into which the u’s [0,1] interval is subdivided.

• Nv: This textfield works in the same way as the Nu one. But it is related to the v
parameter of graphics that require one, such as the surface or the torus.

• width: A text field related to some three dimensional graphic objects as the ellip-
soid. It is related to the measure of the object, when it has not yet been subjected to
position shifts or rotations, in the x axis direction.

74 The Graphics tab

• length: A text field that works similarly as the width one. However, it is related to the
measure of an object in the y axis direction.

• height: A text field that works similarly as the width and length ones. However, it is
related to the measure of an object in the z axis direction.

9

9
The Controls tab

Now that we have a firmer grasp on the Graphics tab, we turn our attention to a new tab:
Controls. Some exercises have already included a bit of the control functionality. This
section studies it more in depth.

Controls are objects that act as means of interaction for the user. They enable the user
to perform changes in variable’s values, launch animations, execute functions, as well as
many other actions. The average user has most likely used one of these tools, such as
spinners, scrollbars, menus and buttons.

Just as with the graphic objects already reviewed, different types of controls share many
parameters. These common controls can be checked near the end of the current section.
If a parameter is mentioned in a particular control, it is because its functionality in relation
to that control is specific, or because it is only present in that type of control.

The Controls tab is shown by clicking on its name tab at the top of the configuration
editor. Figure 9.0.0.1 shows the configuration editor with the Controls tab displayed, right
after a new spinner has been added.

The Controls tab also has a panel at the left which houses a list of the added controls.
This panel’s functionality is the same as for the Graphics tab left panel. This panel allows
the user to filter the controls inside a specific space, has a + button to add a new control, a
- to delete it, a * to clone a control, and arrow buttons to move a control up or down in the
list.

There is a slight difference between how the graphics and controls behave regarding
their place in the list at the left panel. Whereas graphics are drawn in the order in which
they appear (the first one drawn being the one at the top of the list), controls are drawn in
the reverse order. The last one drawn is the one at the top of the list, and if two controls
share the same place inside a same space, the one actually visible will be the one nearer
the top of the list.

Additionally, whereas graphics can be set in absolute or relative coordinates via their
expression parameter, the expression parameter of controls is always interpreted in abso-
lute coordinates.

75

76 The Controls tab

Figure 9.0.0.1: The Controls tab.

There are many types of controls. A few are considered numeric: the button, spinner,
scrollbar, checkbox, text field and menu. There is also only one graphic one, which is
draggable. There are some other which do not fall into either category: the text, video and
audio controls. To add a control, the + button at the top of the left panel of the Controls tab
must first be clicked. This launches a pop-up dialog where the control type can be selected
in a menu. This dialog also has a text field where the control’s identifier is entered. Upon
clicking Add in the dialog, it closes and the control appears in the list at the left panel.

Most controls are lodged by default in the southern area of the scene (an area that
appears at the bottom of the screen when a control is placed there). This can be changed
by selecting a different option in the control’s region parameter.

9.1 Spinner numeric control

This type of numeric control is associated with a variable named after the control’s identi-
fier. The spinner allows the user to increase or decrease the value of the variable in ques-
tion by means of a couple of buttons included in it. It can additionally have a text field in
which the user manually enters a value or expression for it. Most of the spinner’s param-
eters are common to other control types, and can therefore be reviewed in the controls’
common elements topic. The ones particular to the spinner are:

• buttons position: A menu used to determine the position and orientation of the
buttons used to increase / decrease the spinner’s variable value. Their position is
relative to the text field associated to the spinner, and the orientation can be vertical
or horizontal. Since the configuration of the spinner is horizontal by default, the
horizontal options in this menu allow for larger buttons. The options are:

9.1 Spinner numeric control 77

– left vertical: (default option) Both buttons are at the left of the text field. The
button to decrease lies below the one to increase.

– right vertical: The buttons are vertical, as in the last option, but at the right of
the text field.

– left horizontal: Both buttons lie left of the text field. However, each completely
spans the control’s height. The one used to decrease the value is at the left of
the one used to increase it.

– right horizontal: The buttons are set horizontally, as in the previous case, but
both lie at the right of the text field.

– end horizontal: The decrease button appears at the left, then the text field at
its right, and finally the increase button. In this option, the text field is centered
between the buttons.

• decrement image: A text field blank by default. A path to an image file can be en-
tered here if the button used to decrease the spinner’s value is to have an image
background. The path is set relative to the scene’s html file. Bear in mind that, if an
image is set here, it will only be displayed after the scene has been saved (so that the
path makes sense), and reloaded. Additionally, the image’s original size is rescaled
when it does not fit in the button.

• increment image: A text field that works very similar to the decrement image one.
However, the image here included will be set as the background to the button used
to increase the spinner’s variable value.

Figure 9.1.0.1 presents an example of a spinner control. Figure 9.1.0.2 shows the con-
figuration required for the example.

Note that the spinner in the example is designed to control the scale of the E1 space.
The control’s action parameter is set to calculate, and the parameter of calculation assigns
the spinner’s value to the scale value of the aforementioned space. A more in-depth review
of this type of variables can be reviewed in the space variables topic.

78 The Controls tab

Figure 9.1.0.1: Spinner numeric control example.

Figure 9.1.0.2: Spinner control example configuration.

Note that the spinner in the example has a checkmark in its visible checkbox. It there-
fore displays the text field in which the user can enter the value to use. Beside accepting
explicit numeric values, this text field also accepts expressions that can be internally eval-
uated. For example, if 2+1 is entered, after clicking the ENTER key, the spinner’s value in
the text field automatically changes to 3. Or, if pi/2 is entered, a 1.5707... value is displayed
in the text field (this depending on the decimals allowed for the spinner, and considering
that pi is an expression which DescartesJS internally recognizes as π). All this behavior is
also present for the text field control.

We are now ready to try an exercise involving two spinner controls for the width and
height of a rectangle triangle. The scene is additionally supposed to display the length of
the hypotenuse and the area of the triangle. This exercise’s interactive scene, along with

9.2 Text field numeric control 79

the instructions to build it, can be found at Controls Spinner. The interactive scene’s file
as such can be found at this link. All these files are also stored in the DescartesJSDocumen-
tation.zip file.

This exercise shows the importance of the action parameter of a control. It also stresses
the importance of initial calculations, such as the ones used in the INICIO algorithm so
that the interactive scene is prepared to work from the beginning.

9.2 Text field numeric control

This kind of numeric control is a field where text or numbers can be typed. It is particu-
larly useful to provide the user a means of entering information into the scene. Its main
parameters are discussed in the controls’ common elements topic.

Figure 9.2.0.1 presents an example of a textfield. Figure 9.2.0.2 shows the configuration
required for the example.

Note that, in this example, the textfield is used as a means to get the user’s name. That
is the reason why it is set as text only. Its name parameter is left empty, since the user has
no need to associate it with a name. The control’s initial value is set to a couple of single
quotes (`'). This means that a blank character string is its initial value. Additionally, a text
graphic object was separately added to print the What is your name? question but this
functionality is not addressed in this topic.

Figure 9.2.0.1: Textfield numeric control example.

• only text: A checkbox that favors a textual interpretation of whatever is entered in
the textfield.
For example, if the only text it is marked for a t1 textfield, and the value is 123, the

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Controls_Spinner/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Controls_Spinner/Controls_Spinner_scene.html

80 The Controls tab

Figure 9.2.0.2: Textfield control example configuration.

t1+3 operation will result in 1233 (the concatenation of the string 123 with 3). Oth-
erwise, t1+3 results in 126 (the sum of both numbers). DescartesJS is relatively in-
telligent and may operate it if it recognizes what is entered can be interpreted as a
number, even when the only text checkbox is marked. For instance, t1*3 will return
369 instead of returning an error message.

Textfields include an automatic expression evaluation tool. It works if the only text
checkbox is unmarked. This behavior is shared with other control that include their own
textfields, such as spinners. As an example of this functionality, consider entering 2+1 in a
textfield. After pressing ENTER, the textfield will have a 3 value inside. Similarly, the user
could enter cos(pi) (remember DescartesJS has an internal pi variable with an approxi-
mation of π). Upon pressing ENTER, -1, the expression is evaluated and a -1 value now
appears in the textfield. If, however, the textfield is set to be text only, the expression is
not evaluated and the entered text remains there. Some situations make this automatic
evaluation undesirable. In such cases, the _Num_() function can be used. This function is
described more in depth in the DescartesJS language functions topic.

We are now ready to try an exercise involving a textfield. This exercise shows the dif-
ferent ways in which the user can interact with it. It also stresses the difference between a
text only textfield and one that is not. It also includes a bit of practice with the text edition
tool. For more information on this functionality, read the text editing tool topic.

This exercise’s interactive scene, along with the instructions to build it, can be found
at Controls Textfield. The interactive scene’s file as such can be found at this link. All these
files are also stored in the DescartesJSDocumentation.zip file.

This exercise allowed us to see many things. An important one being the difference be-
tween a text only textfield and one that allows for numerical values. The NaN error mes-
sage typically appears when attempting a division by zero, or the extraction of a square

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Controls_Textfield/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Controls_Textfield/Controls_Textfield_scene.html

9.3 Menu numeric control 81

root of a negative value. However, it is also displayed when operating non-numerical ele-
ments. One last important thing to consider is that, even though a number is entered in
a text field, it does not mean it will be taken as such. It can also be taken as a character
string in which the characters are numbers.

9.3 Menu numeric control

This control is a typical menu. It is typically used to provide the user with options from
which to choose within the interactive scene. The identifier of the menu holds its value,
which is a positive integer. If the menu’s first choice is selected, its identifier has a 0 value.
If the second choice is selected, the identifier’s value is 1, and so on. Many of this con-
trol’s parameters are generic to all controls and can be reviewed in the controls’ common
elements topic.

Figure 9.3.0.1 presents an example of the menu control. Figure 9.3.0.2 shows the con-
figuration required for the example.

Note that the example presented could serve the purpose of providing the user a means
(multiple choice) to answer a given question. For instance, where a number lies in the real
line relative to 2 numbers (a and b). The menu here has four options (as can be seen in
its options parameter). However, the first one is used only to present its title, whereas the
final 3 are actually possible answers.

Figure 9.3.0.1: Menu numeric control example.

82 The Controls tab

Figure 9.3.0.2: Menu control example configuration.

• value: A text field in which a positive integer value is entered, which corresponds
to the menu’s initial value. This value determines the value given to the identifier
from the start, and therefore determines which option is selected in the menu when
launching the scene.

• options: A text field where the options of the menu are entered in order. The comma
(,) character is used to separate the options. If the first options is to remain blank,
the list can start immediately with a comma.

We are ready to try an exercise in which a menu is used to determine which geometric
figure is shown from various different ones. Besides including a menu, this exercise also
uses conditionals and text graphic objects.

This exercise’s interactive scene, along with the instructions to build it, can be found at
Controls Menu. The interactive scene’s file as such can be found at this link. All these files
are also stored in the DescartesJSDocumentation.zip file.

This exercise has a bit more difficulty and is a bit more professional than other that
have come before. A little more attention is paid to aesthetics, such as centering the menu
and hiding the cartesian plane when it becomes unnecessary. The menu’s identifier is also
now chosen by the programmer. Graphic objects also include a description via their info
parameter, making them easier to identify in the list.

9.4 Scrollbar numeric control

This type of numeric control consists of a draggable bar which can be set vertically or hor-
izontally, much like the progress scrollbars in many computer windows. When the bar
is dragged, the numeric control changes value. All the parameters related to this control

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Controls_Menu/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Controls_Menu/Controls_Menu_scene.html

9.4 Scrollbar numeric control 83

are discussed in the controls’ common elements topic, so no particular elements are dis-
cussed for the scrollbar.

Figure 9.4.0.1 shows a scrollbar example. Figure 9.4.0.2 shows the configuration re-
quired for the example.

Note that the bar in the example is set to control the scale of the E1 space (its action
is set to calculate, and the calculation parameter assigns the control’s value to the space’s
scale variable). This functionality is not inherent to the bar, and can be reviewed in the
space variables topic.

Figure 9.4.0.1: Scrollbar control example.

Figure 9.4.0.2: Scrollbar control example configuration.

84 The Controls tab

• color: a button which launches the color editor tool to set the scrollbar’s background
color or image.

• inner color: a button which launches the color editor tool to set the scrollbar’s han-
dle color or image, and the buttons at the scrollbar’s edges. If a color is assigned
using the Gradient tab of the color editor tool, the edges colors correspond to the
gradient vector’s edges colors; and the scrollbar’s handle changes color when moved
near one edge or the other.

We now do an exercise to practice the use of this type of control. We also take this
opportunity to practice additional DescartesJS functionality such as the use of variables
related to spaces. This exercise’s interactive scene, along with the instructions to build it,
can be found at Controls Scrollbar. The interactive scene’s file as such can be found at this
link. All these files are also stored in the DescartesJSDocumentation.zip file.

This exercise allows us to see how a control can directly change the value of a variable,
which in turns allows it to directly control the scale of a given space. This can be used
as a means to zoom in or out inside the space in question. The equation graphed in the
example oscillates infinitely at any given interval around the origin. The user can use the
scrollbar to zoom in and notice this effect. Special care should be taken when handling
scale variables. If a scale variable is set to 0 or negative, the scene might crash. That is the
reason why a minimum 10 value is set for the scrollbar.

A scrollbar can also be vertically oriented. This is achieved by setting the scrollbar
inside a space (with its region parameter set to interior), and assigning it a width lower
than its height.

9.5 Button numeric control

This control is the simplest there is. It consists of a button that, when clicked, does a
specific action. Many of its parameters are common to most other controls, and can be
reviewed in the controls’ common elements topic.

Figure 9.5.0.1 presents an example of the numeric button control. Figure 9.5.0.2 shows
the configuration required for the example.

Note that the example shown is used in a case in which the calculation done by the
button determines whether the user’s answer is correct or not. The answer provided is
stored in another numeric control (AnswerField), a text field. Note also that the button’s
calculations involve a variable named correct which is 1 if the answer is correct, and 2 oth-
erwise. The functionality involved in this particular calculation is reviewed in the boolean
conditions and operators topic.

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Controls_Scrollbar/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Controls_Scrollbar/Controls_Scrollbar_scene.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Controls_Scrollbar/Controls_Scrollbar_scene.html

9.5 Button numeric control 85

Figure 9.5.0.1: Button numeric control example.

Figure 9.5.0.2: Button control example configuration.

• text color: A button which launches the color editor dialog to select the color of the
button’s text.

• text border: A checkbox that, when marked, draws a border around the text. The
color of the border is selected using the color editor button right of the checkbox.
This button is only active if the checkbox is marked.

• interior color: A button that launches the color editor, which is used to set the inner
background color of the button. As will be mentioned soon, it is possible to make
buttons display images. If such images have a certain degree of transparency, the
button’s interior color transparency should be set to its maximum, so as to avoid
undesired effects due to compounded transparencies.

86 The Controls tab

• font: A menu to select the font to be used on the button’s text. The available options
are SansSerif, Serif, and Monospaced.

• font size: A text field in which the size of the font is specified in points.

• bold: A checkbox to set the font in bold style.

• italic: A checkbox to set the font in italics.

• underlined: A checkbox to underline the font.

• pos text: A menu that controls the position of the text relative to the anchor point
indicated in the expression parameter of the text graphic. Its options are top-left, top-
center, top-right, center-left, center-center, center-right, bottom-left, bottom-center,
and bottom-right. As an example, if the user chooses top-right, you can imagine the
text to be contained in a rectangle. The rectangle’s top-right corner will be the one
placed in the coordinates indicated by the text’s expression parameter.

• image: A text field where an image file (jpg or png) to be used as the button’s back-
ground is indicated. It should include the path to the file relative to where the scene’s
html file is located. It should also include the file extension. If the file is in a sub-
folder, remember to use the / character as separator. For instance, for a btn.png
file inside an images folder placed at the same level as the html file, this parameter
should contain images/btn.png. A couple of additional image files may be added
for a down functionality (the image appears while the button is pressed down), and
an over functionality (the image appears when the mouse hovers over the button
without clicking or pressing it).

– down: The image file to be used has the same name as the button’s background
image file, but also includes a _down suffix. This file must be stored in the same
folder as the background file. For example, if the main image file is named
btn.jpg the down file should be named btn_down.jpg, and stored in the same
folder as btn.jpg. When the button is being pressed, this image is displayed.

– over: Similar to the down functionality, an over file can also be included in the
same folder by using an _over suffix. For our btn.jpg example, a btn_over.jpg
file can be included in the same folder as the main image file. This over image
is displayed when the the mouse hovers over the button.

• pos image: A menu with the same options as the pos text one. The selected position
is the anchor point, inside the button’s area, in which the image’s top left corner is to
be placed.

• tooltip: A text field where a tooltip contextual indication can optionally be included.
This indication will briefly be shown when the user hovers the button in the scene
for longer than 1.5 seconds. It usually consists of a text explaining what the button
does.

• extra style: A text field that can be used to implement additional style to the button.
The style indicated via this parameter is different from the over and down images

9.5 Button numeric control 87

that can be associated to the button. For instance, a button could have the following
string, which involves all the available edition that can be used in this parameter:
border=3|borderRadius=10|borderColor=ff0000|overColor=e0a12b|

downColor=0000ff|inactiveColor=c0c0c0|font=Serif|shadowTextColor=

a6620e|shadowBoxColor=808080|shadowInsetBoxColor=b46100|flat=1

All this text is written run on (no breaks). Each edition block is separated from the
next by a | symbol (commonly known as pipe), which is typically found left of the
1 key in the alphanumeric keyboard. After an edition parameter, an = sign follows,
followed by its assigned value. If one edition parameter is not indicated, it is ignored
an the button uses the default configuration for it. The following list includes all
available edition parameters:

– border: a number associated to the number of px used for the width of a border
that surrounds the button.

– borderRadius: the number of px used as the radius of a circle to define the
curvature at the corners of the button (a greater radius corresponds to a larger
part of the corner being curved). Its default value is 0, and it means the button
will have right angles for corners.

– borderColor: a hex color code for the border of the button (the one defined by
the border edition parameter). For more information on hex color codes, visit
the color editor topic.

– overColor: a hex color code to specify the button’s background color when the
mouse hovers over it for more than 1.5 seconds.

– downColor: a hex color code to specify the button’s background color when
the button is being pressed down.

– inactiveColor: a hex color code to specify the button’s background color when
the button is in its inactive state. That is, when the condition inside the button’s
active if parameter is not being met.

– font: the name of the font to be used. Its options are SansSerif, Serif, and
Monospaced.

– shadowTextColor: a hex color code to specify the shadow generated by the text.
If this edition parameter is not included, no shadow will accompany the text.

– shadowBoxColor: a hex color code to specify the color of the shadow gener-
ated by the button’s edges. This shadow lies outside the button itself, and the
shadow is therefore not clickable. If it is not included, no such shadow is im-
plemented.

– shadowInsetBoxColor: a hex color code to specify the color of the shadow in-
side the area of the button. Since it is inside, this shadow is actually part of the
button and is therefore clickable. If this edition parameter is not included, no
such shadow is implemented.

– flat: an edition parameter that determines if the button’s design is to be flat. A
zero value results in a button with its default color gradient. A 1 value results

88 The Controls tab

in a flat design button (no color gradient). Note that, when gradient is present,
it is drawn vertically: the button’s center being drawn clearer than the top and
the bottom.

We now do an exercise involving a button whose function is to calculate the value of
a numeric sequence when its two initial values are specified. This exercise’s interactive
scene, along with the instructions to build it, can be found at Controls Button. The in-
teractive scene’s file as such can be found at this link. All these files are also stored in the
DescartesJSDocumentation.zip file.

This exercise allowed us to practice the use of the button numeric control as a means to
calculate sequences of values. Note that the sum variable in each step corresponds to the
values of the Fibonacci sequence, its initial values being 1, 1, 2, 3, 5, 8, 13, 21, 33, ... A value
of a certain number in the sequence is the sum of the two preceding ones. A noteworthy
difference found in this exercise is that it stresses the importance of initializing variables
in some situations. Were the variables in this example not initialized with a 1 value, the
value of sum would be always 0. Variables not initialized are all given a default 0 value.

9.6 Checkbox numeric control

The checkbox is a control which adopts only two values: 1 for marked, 0 for unmarked.
They are typically used as means to answer yes/no questions and in multiple choice exer-
cises (when under their radio button functionality, as described below).

This control’s functionality is twofold: its default one is as a checkbox. However, it
can also be used as a radio button, which is a control that can also be only marked or
unmarked, but that belongs to a group with other controls, and only one of all can be
marked. Imagine a survey takes place where the user can select his/her favorite genres of
movies. In this example, checkboxes are the choice to use, since the user can check more
than one, even all if that is the case. However, if the behavior is mutually exclusive, as in
the selection of intervals for a date of birth, the radio button is more adequate. In this case,
if the user selects an option, all other options are cleared of their mark.

Figure 9.6.0.1 presents an example of the numeric checkbox control. Figure 9.6.0.2
shows the configuration required for the example.

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Controls_Button/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Controls_Button/Controls_Button_scene.html

9.6 Checkbox numeric control 89

Figure 9.6.0.1: Checkbox numeric control example.

Figure 9.6.0.2: Checkbox example configuration.

• id: A textfield for the identifier of the checkbox, which is also the internal variable
holding the value of the control.

• value: A textfield for the initial value assigned to the control. For checkboxes and
radio buttons, 0 means the control is unmarked and 1 means it is marked.

• group: A text field where the name of a group of controls is entered. This is used only
if the control is to be used as a radio button rather than as checkbox. All controls
belonging to the same group, and therefore acting as mutually exclusive from one
another, should have the same group name entered in this parameter. This ensures
that when one is selected, all other in the same group become unmarked.
If this text field is left blank, the control will act as a checkbox

• position: A menu to choose if the checkmark (or radio button) is to be placed at the
right of its name or at its left.

90 The Controls tab

A checkbox and a radiobutton have a graphic difference: the former is a square box
and its mark is a checkmark, whereas the latter is a round area and its mark is a small
black circle inside it.

We now do an exercise involving the checkbox control under its checkbox functionality
and under its radio button one, so as to better understand the difference. Suppose the
user is to determine which of four different units is the odd one out. This requires a radio
button, since the question is designed so as to only have one odd option out.

This exercise’s interactive scene, along with the instructions to build it, can be found at
Controls Checkbox. The interactive scene’s file as such can be found at this link. All these
files are also stored in the DescartesJSDocumentation.zip file.

On the one hand, the checkbox is a control allowing a binary value (0 or 1), and it is
not coupled with other controls. On the other hand, the radio button is also binary, but is
coupled with other similar controls. The coupling is done via the group parameter of the
control.

Again, note that this exercise required determining whether the answer given by the
user is correct or not. The boolean conditions and operators topic has information re-
garding this functionality.

9.7 Graphic control

Graphic controls, unlike numeric ones, consist of points in a 2D space which can directly
be dragged using the mouse or by pressing and dragging them in mobile devices. These
controls are added by clicking the + button in the Controls tab, and selecting the graphic
option from the menu in the pop-up dialog. They also have identifiers, and it can be set
directly in that dialog, or specified later on via the control’s id parameter. Once added, the
dialog closes and the graphic control appears also listed in the left hand side panel of the
Controls tab.

Figure 9.7.0.1 presents an example of a graphic control in a scene. Figure 9.7.0.2 shows
the configuration required for the example. This example also has an equation graphic ob-
ject present used to draw the equation of constraint of the graphic control. The equation’s
expression is the same indicated in the graphic control’s constraint parameter: y2−x2 = 1.
The purpose of drawing the equation is to show that the graphic object is constrained and
can only be present in that part of the 2D space. Visit the equation graphic object topic for
more information on this type of graphic.

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Controls_Checkbox/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Controls_Checkbox/Controls_Checkbox_scene.html

9.7 Graphic control 91

Figure 9.7.0.1: Graphic control example.

Figure 9.7.0.2: Graphic control example configuration.

• id: A text field to enter the graphic control’s identifier. This identifier is also used as a
prefix to variables related with the control’s horizontal and vertical positions relative
to the cartesian plane, and to a variable which determines if the control is being
used or not. This constitutes a difference with the information the identifiers of
numeric controls. Numeric controls’ identifiers only held a value. Graphic controls’
identifiers are associated with three variables related to the control’s state.

• space: A menu where the space lodging the graphic control is selected.

• expression: A text field with the initial coordinates of the graphic control. The origin
is its default. If the control is to be constrained to a curve and the point in the ex-
pression does not lie in that curve, the control will appear in the point on the curve
nearest to the one in the expression parameter.

• size: A text field with the radius value (in px) of the circle representing the graphic
control. Small sizes may result in difficulty in clicking and dragging the control.

• constraint: A text field to enter the constraint equation for the graphic control.
Its default value is blank, which means the graphic control is not constrained. If

92 The Controls tab

an equation is entered here, the graphic control will only be able to move on the
graph of the constraint equation. For example, a x�2+y�2=4 constraint will allow
the graphic control to only move in a circle centered at the origin with a radius of 2
units. Were the constriction x�2+y�2<=4, the control would also be allowed to live
inside the circle, but not outside.
If the expression given for the graphic control’s initial position is not part of the con-
straint, the point in the constraint nearest the expression is chosen instead.

• color: A button that launches the color editor dialog the outer color of the circle that
represents the graphic control.

• interior color: A button that launches the color editor to select the graphic control’s
inner or fill color (the color inside the circle representing the graphic control).

• image: A text field where a path relative to the scene’s html file may be entered. This
path points to a jpg o png image that will represent the graphic control instead of
the circle. The image then will be clickable and draggable as the graphic control.

Some situations demand more detailed information of where a graphic control is, or
further restrictions to its movement than those specified in the constraint parameter. There
are two variables related to the horizontal and vertical coordinates of a graphic control rel-
ative to the cartesian plane of the containing space. These are <control identifier>.x and
<control identifier>.y. For example, if a control has a grf identifier, grf.x contains its hori-
zontal position value and grf.y contains its vertical position value. These variables can be
used both to print the values and know exactly where the graphic control is, or to enter
the horizontal and vertical values so the used can place the control exactly where desired.
Another related variable is <control identifier>.active (or, also, <control identifier>.activo),
which has a 1 value when the graphic control is selected or being dragged, and 0 otherwise.
For our current example, grf.active would be the related variable.

Furthermore, spinner type numeric controls can be created with their identifiers cor-
responding to a graphic control’s horizontal and vertical coordinates so as to restrict the
positions allowed for the graphic control. For instance, if a spinner control with a grf.x
identifier is added, with an initial 0 value, 1 unit discrete increments; if the user then drags
the grf graphic control, it will not move around freely horizontally, but will rather skip,
only falling on integer values for its horizontal component.

In order to make all this functionality clearer, we first undertake a first exercise. Sup-
pose we want a scene with a histogram of the number of persons with ages 26 and 27.
The histogram will involve a couple of columns whose height is directly draggable (us-
ing a graphic control for that purpose). As a part of this exercise, the average age is also
calculated.

This exercise’s interactive scene, along with the instructions to build it, can be found at
Controls Graphic 1. The interactive scene’s file as such can be found at this link. All these
files are also stored in the DescartesJSDocumentation.zip file.

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Controls_Graphic_1/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Controls_Graphic_1/Controls_Graphic_1_scene.html

9.8 Text control 93

This scene shows us how draggable objects are useful to control certain variables. This
can potentially be extended to control the sides of geometric figures, the width or heights
of images, etc. This ability to drag objects is handled via graphic controls. We also saw an
example of how to use the CALCULOS algorithm to perform instructions almost continu-
ously. However, as mentioned in the topic dealing with that algorithm, the programmer
has to be careful when using it. Saturating it with instructions may be unnecessary and
will only make the scene respond slower. We also saw a strategy to avoid showing errors
such as a NaN error. An alternative No average can be calculated with zero persons in-
volved text could even be displayed when the sum of persons is zero. Finally, the use of
the external region is made patent as a place where the programmer sets aside variables
that may require to be controlled only for debugging purposes, but that are not to be made
available to the end user.

We now do another exercise to further our knowledge of graphic controls. This exercise
additionally provides a useful programming tool: the identification of a position via both
its relative and absolute coordinates. Even though graphic controls are based on relative
coordinates, sometimes it is useful to know where they are in absolute ones. This exercise’s
interactive scene, along with the instructions to build it, can be found at Controls Graphic
2. The interactive scene’s file as such can be found at this link. All these files are also stored
in the DescartesJSDocumentation.zip file.

This exercise provides a means to know both the relative and absolute coordinates of a
graphic control, regardless of any offset to which the origin of the space may be subjected.
If the programmer needs to place a button at a particular place, the graphic control could
be placed there and the absolute coordinates known so as to place the button there.

These represent tools useful to the programmer. Once the objects have been placed
where they belong, the graphic control and its accompanying text can be hidden, or even
removed. They can be hidden by introducing a 0 in their draw if parameter. In this way,
the can be re-used should they be necessary again.

During this exercise, we used a E1._w and a E1._h variables, as well as a E1.Ox and
a E1.Oy one. Finally, we used the E1.escala variable. All these variables are DescartesJS
intrinsic variables, which can be reviewed in the space variables topic.

9.8 Text control

These controls are blocks of text inside a box. Though an initial text can be entered directly
in the text control in the configurations editor, it is also possible to edit it later on in the
scene. The text control in the scene also has a button located at its bottom right corner.
This button can be used to alternate a question / answer text.

Figure 9.8.0.1 presents a text control example. Figure 9.8.0.2 shows the configuration
required for the example.

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Controls_Graphic_2/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Controls_Graphic_2/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Controls_Graphic_2/Controls_Graphic_2_scene.html

94 The Controls tab

Figure 9.8.0.1: Text control example.

Figure 9.8.0.2: Text control example configuration.

• font: A menu to choose the font used fo the text.

• font size: A text field with the font size in points.

• answer: A text field where the answer to a question entered in the text parameter is
entered. This is used usually when the text control is intended to have a question /
answer functionality. Note that this answer is only displayed. There is no evaluation
done to determine whether what the user may have entered is right or wrong.

• text: A text field to enter the contents of the text control. If it is a question, the answer
parameter can also be set to contain the answer to it.

The interactive scene will display the text entered in the text parameter inside the con-
trol in the scene. The user can type text in that field also. If there was anything included
in the answer parameter, a small button with an S letter inside appears at the bottom right
corner of the text control. If pressed, the text in the answer parameter is displayed and the
button’s letter changes to T. If pressed again, it displays the text in the text parameter again
and the button reads S again.

9.9 Audio control 95

The text control identifier is a variable that holds the text entered it via its text param-
eter. If the text is modified by the user in the scene, the variable’s content is updated.

9.9 Audio control

This control consists of an audio player that can be used inside the interactive scene. It
can only be lodged inside a space. It provides support for mp3 and wav audio formats.

Figure 9.9.0.1 presents an example of an audio control. Figure 9.9.0.2 shows the con-
figuration required for the example.

Figure 9.9.0.1: Audio control example.

Figure 9.9.0.2: Audio control example configuration.

• file: A text field with the path and file of the audio file. Remember that the sim-
ple slash / is used to separate subfolders relative to the folder where the interactive
scene is saved. For instance, audio/noise.mp3.

There are some functions and variables related to audio controls. In order to identify
to which control they are associated, the control’s identifier is used as a prefix. A more in-
depth description of these variables can be found in the audio and video control functions

96 The Controls tab

and the audio and video control variables topics. When the functions do not require argu-
ments, no text is entered in their parentheses. For example, a <identificador del control de
audio>.play() function via which the playback of an audio file is controlled.

We now do an exercise in which two different audio files, corresponding to two differ-
ent frequencies, are played back when their respective options are selected in a menu. This
exercise’s interactive scene, along with the instructions to build it, can be found at Controls
Audio. The interactive scene’s file as such can be found at this link. All these files are also
stored in the DescartesJSDocumentation.zip file. The audio files used in this exercise can
be downloaded from 221.mp3 and 371.mp3, and are also included in the DescartesJSDoc-
umentation.zip file.

The way an audio control is displayed in a browser depends on the browser itself, and
on its version. So, it will not necessarily be identical to the one displayed in the Descartes
main editor. Additionally, it may also change in time due to changes performed in a same
browser. Nonetheless, the controls inside the audio stay the same, even if their position
inside the control may change.

Note that we had to add an animation with the sole purpose of refreshing the text print-
ing the playback time. Should the user not need to print such data, the animation could
be turned off. The Animation topic contains a more in-depth discussion on animations.

9.10 Video control

This control is a video player that can be included in an interactive scene. It is very similar
to the audio control. It can play mp4, WebM and ogv files.

Figure 9.10.0.1 presents an example of a video control. Note at the top that the scene
has been saved as bla.html. Figure 9.10.0.2 shows the configuration required for the ex-
ample. A path to a file is included in the file parameter. In this example, the video file is
housed in a video folder placed alongside the scene’s html file.

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Controls_Audio/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Controls_Audio/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Controls_Audio/Controls_Audio_scene.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Controls_Audio/audio/221.mp3
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Controls_Audio/audio/371.mp3

9.10 Video control 97

Figure 9.10.0.1: Video control example.

Figure 9.10.0.2: Video control example configuration.

• file: A text field where a path to a video file is entered. This path is relative to the
folder where of the scene’s html file is saved.

DescartesJS video controls have a few intrinsic functions: <control id>.play(), <control
id>.stop(), <control id>.pause(), <control id>.currentTime(<start time>). There is also an
intrinsic <control id>.currentTime variable (note it has no argument parentheses as func-
tions usually do), which holds the playback time in seconds. These intrinsic functions and
variables are shared with audio controls. They are explained further in the audio and video
control functions and audio and video control variables topics.

Similar to the audio control behavior, the video control in one web browser may differ
from the one displayed in a different browser. For instance, some may have the button to
display the video full-scree, some may not. It all depends on the browser’s video player,
and does not depend on DescartesJS.

Even though a minimum of two coordinates is required in the video control’s expres-
sion parameter, we suggest including all four entries (x and y coordinates, and the width
and height of the video) for better results. If possible, the width and height should be the
same width and height of the video being used or, at least, have the same height to width
ratio.

98 The Controls tab

When the video control is first displayed, it appears stopped and the user has to click
play to see it. There is no preview for the video, and the video control appears empty. If the
programmer wants to display a preview in this state, a png image file has to be taken and
saved alongside the video file and with the same name as the video (though its extension
will be different). This image file should have the same dimensions as the video. Once
the scene is reloaded, this image will be placed as a first-frame preview of the video. The
example in figure 9.10.0.1 uses this functionality.

Since video controls are very similar to audio ones, no particular exercise is included
for them.

9.11 Elements common to multiple controls

The parameters present for various controls are listed as follows:

• info: A text field to enter a description of the control in question. This information
will not reach the scene, and is used only to aid the programmer so as to find a given
control with ease. If something is entered in the info parameter, the control’s default
description in the list at the left panel will be replaced with the one in info.

• id: A text field where the control’s identifier is entered. The identifier is sort of the
“inner name” given to it inside the program. The user usually never knows the iden-
tifier of a given control. However, the identifier is usually related to a variable hold-
ing information about the control. For instance, the value of a numeric control is
stored in its identifier. The identifier may also be indirectly associated to it. For ex-
ample, a graphic control’s identifier is the suffix to three variables related to it: its x
position, its y position, and its state of activity. Since they are related to variables, no
identifier can start with a number. However, they can start with an underscore (_)
character.
Identifiers for a control can be defined via the dialgo that pops-up when a control is
added or cloned. Alternatively, they can be defined after the control has been added
by simply editing the id parameter. Just remember the related variable will then be
differently inside the program.

• name: A text field for the name of the control. This is not the identifier, but a name
that can actually be displayed in the scene for the user to see. Though a control
may have the same name as its identifier, it is good practice not to mix them. For
example, a spinner control used to store a distance could have a distSp identifier,
while its name could be Distance control.
Additionally, since names are not variables, they can start with numbers and handle
uncommon characters. If a control’s name is not to be shown, this parameter is be
left blank, or can simply contain a _nada_ text.

• gui: A menu to determine the control’s graphic user interface. Only spinners, but-
tons, scrollbars, textfields and menus have this menu. These are also the options

9.11 Elements common to multiple controls 99

available in the gui menu. So these controls can be interchangeable. This may be
useful when the design of a scene changes and this impacts on how the user will en-
ter information. In this case, it may be necessary to change the interface of a given
control.

• region: A menu set by default at south when adding a new control. It determines the
region where the control is housed.

– south: Places the control in the southern margin of the scene, outside from
any space. Many controls can be simultaneously housed in this area. This area
takes space from scene’s dimensiones. So, when a control is added and left
in this area, the available height left for spaces and other elements will be re-
duced. This area, as well as north, east and west usually house controls when
they are to be displayed always. Otherwise, it is better practice to house them
inside spaces.

– north: Places the control in the northern (top) margin of the scene, outside
from any space. This northern row sacrifices some of the scene’s height, as
does the south one.

– east: Places the control in the eastern (right) margin of the scene, outside from
any space. When this eastern bar is displayed, it takes space from the scene’s
dimension, and will therefore sacrifice some of the scene’s width left for spaces
and other elements.

– west: Places the control in the western (left) margin of the scene, outside from
any space. This western margin sacrifices width from the scene’s width, as does
the east one.

– external: Places the control in the external region. This region consists of a
panel apart from spaces and other regions. This region can only be displayed
if the show external region checkbox is marked. This checkbox is located in
the Scene tab. When marked, if the user right-clicks the scene, the panel will
be displayed. All controls with their region set to external will be found in this
panel, along with some other default buttons. This region is a good place to
store controls that are not to be shown to the end user, and are only used for,
for instance, debug purposes. Only the programmer will know of them and
use them while building the scene. Once finished, the external region can be
disabled and the end user need not know of them.

– interior: Places the control inside a space. When this option is selected, the
space parameter of the control activates. In it, the desired space can be selected
where the control is to be logde. The expression parameter will also activate,
where the absoluto coordinates where the control is to be located inside the
space are entered, along with the control’s width and height.

• space: A menu with the various spaces available as options. The selected one is

100 The Controls tab

where the control in question is to be lodged. It is only active when the region pa-
rameter is set to interior.

• draw if: A text field where a boolean condition is entered. If true, the boolean condi-
tion has a 1 value and the control is displayed. Otherwise, the boolean condition has
a 0 value and the control is not shown. Its default value is empty, which corresponds
to the control always being displayed.

• active if: A text field where a boolean condition is entered. If true, the boolean con-
dition has a 1 value and the control is active. Otherwise, the control is not active,
though shown. Its default value is empty, in which case the control will always be
active. Inactive controls may be shown, but are slightly gray and unresponsive.

• expression: A text field to enter the control’s coordinates and its width and height.
The expression typically is a set of parentheses inside which four numbers are en-
tered and separated from one another via commas (,). The first two numbers are the
x and y absolute coordinates of the control’s top left corner. The third and fourth are
the width and height (in px) of the control.

• value: A text field where the initial value given to the control is entered. Depending
on the setting of the control, it may be a number, a character, a string of characters,
or even a variable.

• font: A menu where the font used to print the control’s name label is set. The avail-
able options are SansSerif, Serif and Monospaced.

• font size: A text field where the size (in points) of the font used to print the control’s
name label is entered.

• bold: A checkbox that, when marked, makes the control’s name label be printed in
bold.

• italics: A checkbox that, when marked, makes the control’s name label be printed in
italics.

• label color: A button that launches the color editor dialog to select the color and
transparency of the control’s name label background.

• label text color: A button that launches the color editor dialog to select the color and
transparency of the control’s name label text.

• decimals: A text field where a positive integer is entered, corresponding to the num-
ber of decimal places that are to be displayed when printing the control’s value. If
the true value exceeds the number of decimals allowed, the value printed is rounded
so as to only use the allowed number of decimals.

• fixed: A checkbox that, when marked, forces the control’s printed value to show all
the allowed decimals set in its decimals parameter. If unmarked, these will only be
displayed if they are significant.

• exponential if: A text field where a boolean condition is entered. If the condition
is false, its value is 0 and the exponential notation will never be used when printing

9.11 Elements common to multiple controls 101

the control’s value. However, if the condition is true, its value is 1 and the control’s
value will be printed using exponential notation if the DescartesJS engine deems it
necessary. Its default value is empty, which is equivalent to the control’s value never
being printed in exponential notation.

• visible: A checkbox that, when marked, results in printing the control’s value and,
when unmarked, keeps it hidden.

• discrete: A checkbox that, when marked, forces the values adopted by the control
to be such that their differences with the control’s initial value (the one given in the
value parameter) are exactly multiples of the control’s increment (the one given in
the incr parameter). This works as described only if the increment is constant (not
given via a variable), and has the same number of significant decimals as indicated
in the control’s decimals parameter.
For example, if a spinner has its value parameter at 0.25, the increment at 0.15, is
set to use 2 decimals, and the discrete checkbox is marked, it will start at 0.25 and, if
increased, will change its value to 0.4. If it is decreased, it will adopt a 0.1 value.

• incr: A text field where a number is entered, that corresponds to the size of the in-
crement allowed for the control. This applies to the decrement as well (in general,
any change in value).

• min: A text field where the minimum value allowed for the control is entered. If
left with its default blank value, no lower limit is set for the control. If the initial
value given to the control lies below the minimum value, the control starts with the
minimum value (it overrides the value parameter in such a case).

• max: A text field where the maximum value allowed for the control is entered. If
left with its default blank value, no upper limit is set for the control. If the initial
value given to the control lies above the maximum value, the control starts with the
maximum value (it overrides the value parameter in such a case).

• action: A menu used to determine what action is to be taken every time the user
uses the control. The available options are:

calculate: the calculations in the parameter field right of the action menu will
be done when the control is used. The can be value assignments to variables,
arrays or matrices. Calls to functions can also be done here.

init: the scene is loaded from its saved version when the control is used. This
action is the same as when the init button (enabled in the Scene tab by marking
the button init checkbox) is used.

clear: any traces left from graphic objects (those set to leave a trace by having
their trace checkbox marked), are cleared. This action is the same as when the
clear button (enabled in the Scene tab by marking the button clear checkbox)
is used.

animate: if there is an animation defined in the Animation tab, it is launched
when the control is used.

102 The Controls tab

open URL: opens a URL address when the control is used. The address is spec-
ified in the parameter field right of the action menu. The path can be relative
to the html file of the interactive scene, or it can be an absolute path to a web
page.

open scene: opens a preexisting scene housed in the same folder as the current
scene’s html file. The scene is specified in the parameter field right of the action
menu.

play: plays back an mp3 audio file. If the file is in the same folder as the scene’s
file, only its name is entered in the parameter field right of the action menu.
Files in subfolders are also enabled, using the / character as folder separator.
The file is played / paused every time the control is used.

• parameter: A text field placed at the right of the action menu, with an “expand” but-
ton at its right. Single and short instructions or parameters can be directly entered
in the parameter field. However, if more than one instruction is to be entered, or if
the instruction is lengthy, it is better to do so via the “expand” button. It launches a
larger editor where multiple lines (instructions) can be defined. Separate lines are
separated with a semicolon (;) character in the single line parameter field.

When the control’s action is calculate, the paramter consists of assignments and
/ or call to functions.

When the control’s action is open URL, the parameter contains a URL address
relative to the folder lodging the scene’s file in a server. The URL address can also
be an absolute address starting with https://. It is also possible to append the text
target=_self in order to have the page opened in the same tab of the browser
where the original scene is instead of in a new one (which is the default behav-
ior). For example, ./tst.html target=_self opens the tst.html page located in
the same folder as the original scene in the same tab instead of in a new tab.

When the control’s action is open scene, the parameter is the name or path to the
scene to be opened, along with its html file extension, relative to the calling scene’s
location. As with the open URL action, it is possible to include the target=_self

text to indicate that the scene is to be opened in the same tab housing the original
scene instead of in a new one, as by default.

When the control’s action is play, the parameter has the name or path to the
file to be played back, along with its mp3 file extension, relative to the scene’s file
location.

• evaluate: A checkbox common to text fields and menus that, when marked, enables
the automatic evaluation of the control. This behavior is particularly useful when
including evaluation questions.

• answer: A text field present for menus and text fields. It holds the elements to com-
pare as “correct answer” patterns. Many patterns can be entered as correct, using
the | character as separator. This parameter is only useful if the evaluate checkbox

9.11 Elements common to multiple controls 103

is marked. The “correct” answers are listed and, if one of the user’s answer matches,
the answered is regarded as correct.

– when the answer is numeric, the range of valid answers is an interval. For in-
stance, [a,b], (a,b), (a,b] o [a,b).

– for text field numeric controls with their only text checkbox marked, the com-
parison is done character by character.

– the asterisk character (*) works as a wildcard ending or beginning. It can be
placed at the end of a character string, and only the beginning of the string is
compared to determine if the answer is correct. Alternatively, it can be placed
at the beginning of a character string, and the ending of the character string
is compared to determine if the answer is correct. When an asterisk is present
both at the beginning and the end, it is only checked whether the character
string in between is part of the user’s answer to regard it as correct.

– if the answer is not to be sensitive to capital or non capital letters, the proposed
answer is simply flanked between single quotes. For example, ‘answer’.

– if accents are to be ignored, or the difference between n and ñ is to be ignored,
then the proposed answer is flanked between a grave accent (‘) and an acute
one (´). For example, if the proposed answer were ‘estaria´, the estaría word
would be also regarded as correct.

– the question mark works as a wildcard representing characters whose exact
match can be ignored. The ? is entered instead of the character to ignore.

– if the control is a text field and is left empty by the user, the system considers
no answer is given.

– the evaluation system defined by the evaluation administrator is the one that
decides how the correct, incorrect, or blank answers are to be interpreted.

• keyboard: A checkbox to implement the virtual keyboard. It is only available for
controls involving a text field, such as the spinner, text field, menu and scrollbar.

When the checkbox is marked, the keyboard layout and keyboard position pa-
rameters (described below) are activated.

Virtual keyboards are particularly useful in mobile devices. By default, when
clicking the text field of a control in a mobile device, the device’s native keyboard
is launched. These keyboards typically take up half the screen’s area, reducing the
scene’s size so as to be able to fit the native keyboard. The DescaretsJS virtual key-
boards appear on top of the scene, and the programmer can determine its size, com-
plexity and position.

• keyboard layout: A menu with the following options: 14×1, 7×2, 10×2, 4×4, 5×4,
10× 4_al f a, 10× 4_num, 11× 3 y 11× 4. the number before the × symbol is the
number of rows and the one after is the number of columns of the keyboard to use,

104 The Controls tab

so the programmer has an idea of its size and complexity. The _alfa suffix in an op-
tion implies the keyboard is mainly alphabetic. The _num suffix implies a keyboard
that is mainly numeric. Figure 15.3.0.1, in the virtual keyboard topic, displays the
available virtual keyboards in the order in which they were listed previously.

• keyboard position: A text field for the absolute coordinates where the keyboard is
to be placed. For example, a (100,50) keyboard position would place the top left
corner of the virtual keyboard 100 px to the right of the left margin and 50 px below
the top margin.

For more information regarding this functionality, make sure to visit the virtual key-
board topic.

The action menu’s options are executed whenever the control is used. This not only
means using the control’s main interface. For instance, though spinners are typically used
via their increment and decrement buttons, a text or value can be entered in their associ-
ated text fields. When entering the text, their action (set via their action menu) is launched.

We are now ready to practice a bit of this functionality by doing an exercise. This ex-
ercise’s interactive scene, along with the instructions to build it, can be found at Controls
Common. The interactive scene’s file as such can be found at this link. All these files are
also stored in the DescartesJSDocumentation.zip file.

This exercise allowed us to see some of the most typical functions of parameters com-
mon to most controls. The wdthBr control was placed external to the scene since the width
of a figure is something that is to remain fixed in the interactive, and the end user will not
have to deal with it. Perhaps the programmer may need to try some widths to see which
one works best, but once one is chosen, the width control should not be made available to
the end user.

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/ControlsCommon/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/ControlsCommon/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/ControlsCommon/ControlsCommon_scene.html

10

10
The Programs tab

The Programs tab includes part of the hard programming work done in DescartesJS. It in-
cludes two algorithms present by default in a DescartesJS new scene: an INICIO one and a
CALCULOS one. INICIO is Spanish for the starting algorithm, while CALCULOS is Spanish
for calculations. Both are algorithms. The only difference is that the first one is done when
the scene is launched, and the second is repeated constantly when the user interacts with
the scene. Besides algorithms, the Programs tab has another element known as an event.

Just as the other tabs, Programs has a panel at the left where the programs involved in
the scene are listed. This panel, as usual, has a + button to add elements to the list. It has
a * button to clone the selected list element. It has a - button to remove the selected list
element. And it has the upward and downward pointing arrows used to move the selected
list element up or down in the list. The Programs button at the very top of the left panel
displays the code related to the elements in the Programs tab. The elements available in
the Programs tab are:

10.1 INICIO

The INICIO algorithm is present by default. Its name can be manually changed via its id
parameter. It is set to be executed only once when the scene launches. Initial value assign-
ments and calls to functions that are to be done only to prepare the scene are included in
this algorithm. Figure 10.1.0.1 shows the parameters related to this algorithm.

• id: A text field for the algorithm’s identifier. The default INICIO is entered for the
existing one. It is good practice not to change it.

• evaluate: A menu to set when the instructions in the algorithm are to be carried out:

– only once: The algorithm will be carried out only when the scene launches. This
is the default setting for the INICIO algorithm. Assignments and function calls
that are meant to prepare the scene only initially should be included in this
algorithm. Since the instructions are done only at the beginning, they do not
take up much of the system’s resources, and therefore do not affect the scene’s
performance.

– always: The algorithm is evaluated every time the user interacts with the scene.
Instructions that are required to be done constantly should be included in al-
gorithms that are evaluated always. Since these types of algorithms repeatedly

105

106 The Programs tab

Figure 10.1.0.1: Inicio algorithm.

carry out the instructions, saturating this type of algorithms with many com-
plex instructions may affect the scene’s performance. It is best to keep algo-
rithms using the always option as short and as efficient as possible. This option
is the default setting for the CALCULOS algorithm.

• init: A text field in which the algorithm’s initial assignments and function calls are
entered. It can be written run-on in the same field, separating each instruction with
a semicolon (;). Alternatively, the expand button at the right of the field can be used
to expand the field to a window where different instructions can be entered in their
respective lines (i. e., separating each one by an ENTER). Whatever is entered here is
done prior to the instructions in the do panel, which can be set to repeat instructions
(loop them) depending on the condition set on the while parameter.

• do: A text panel where multiple instructions can be entered. Each one is separated
from the next by an ENTER. If the algorithm is to behave cyclically, the instructions
in this do panel are the ones to be repeated, depending on the condition in the while
parameter. If such parameter is left blank, the conditions here entered shall only be
done once. In this situation, it turns out to be the same as to have them in the init
parameter.

• while: A text field where a boolean condition is entered. If the condition is met, this
parameter will have a 1 value, repeating the instructions in the do panel again. Oth-
erwise, the parameter will have a 0 value, and the repetition of the do panel instruc-
tions will cease. In its default blank value, its value is 0 and the do panel instructions
will be done only once.

There is a limit to how many cycle repetitions can be done. A maximum of 100,000
repetitions are allowed. Even if the condition in the while parameter is always true,
and more repetitions should be done, these will stop once that maximum number

10.2 CALCULOS 107

is reached. This behavior is by design, and its purpose is to prevent the scene from
crashing due to an incorrect while condition resulting in an infinite loop.

IMPORTANT: The init and do panels are the first example we see where the program-
mer enters instructions (assignments and function calls). Other places where these in-
structions are entered are the calculation parameter of controls, algorithmic functions in-
structions, etc. Besides this type of instructions, comments can also be added. Comments
are lines of code that are ignored by DescartesJS, and usually serve as pointers so the pro-
grammer knows details about a particular part of the code. A comment line starts with //
(double slash). Whatever comes after that in the line is ignored by DescartesJS.

10.2 CALCULOS

The CALCULOS algorithm is an algorithm just like the INICIO one, its sole difference being
that the evaluate parameter of the CALCULOS one is set to be evaluated always by default.
Apart from that, it behaves as the INICIO one.

Only the two algorithms added by default to a new DescartesJS scene are the ones avail-
able. No other can be added. Even though the evaluate parameter can be changed from
its default value, we suggest keeping them as they are and entering calculations to be done
initially in the INICIO and those to be done repeatedly in the CALCULOS one.

Let us try an exercise to practice the use of these two algorithms. This exercise’s inter-
active scene, along with the instructions to build it, can be found at Algorithms Various.
The interactive scene’s file as such can be found at this link. All these files are also stored
in the DescartesJSDocumentation.zip file. By the way, the INICIO algorithm provided in
this example already contains a few additional instructions that are not part of the steps
to follow when building the scene. They are there as a means of communication between
the scene and the container in which it is hosted, and can therefore be ignored.

This exercise allowed us to see how the INICIO algorithm is used for instructions hap-
pening only once, as opposed to the CALCULOS one used for instructions that are done
repeatedly. Once again, the programmer should be careful not to saturate the CALCULOS
algorithm with complex instructions, so as not to harm the scene’s performance.

Once again, if the while parameter of the algorithm in question is left empty, the do
panel instructions will not be looped. This means that the instructions could be placed
either at the init or the do panels.

10.3 Events

An event is an action, or a group of actions, that are done when a certain condition is
met. The frequency with which they are performed is up to the programmer, as described
below. The list of actions that can be launched when the condition is met are the same

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Algorithms_Various/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Algorithms_Various/Algorithms_Various_scene.html

108 The Programs tab

that as the ones that can be performed with a control’s action parameter. Figure 10.3.0.1
presents the various parameters of an event.

Figure 10.3.0.1: Event program example.

• id: A text field for the event’s identifier. Event identifiers are mainly used to locate
a particular one from the list, though references to them are seldom used in other
parts of the program.

• condition: A text field where a boolean condition is entered. When the condition is
met, and depending on the execution parameter setting, the event’s action is launched.
For more information on these conditionals, review the boolean operators and con-
ditionals topic.

• action: A menu to determine the action that will be launched when the condition is
met. This menu has the same options as the action menu available in controls. For
more information, please review that section.

• execution: A menu to determine the event’s repetition whenever the condition is
met. It has the following options:

– only once: The menu’s default option. When this option is selected, the action
will be executed only once when the condition is met (when it transitions from
being false to being true). After this, if the condition eventually transitions from
false to true again, the action will not be executed again, since the menu is set
to only once.

– alternate: When this option is selected, the action will be executed every time
the condition transitions from a false value to a true one.

– always: When this option is selected, the action will be executed every time the
condition is true, and not only when it transitions from false to true.

• parameter: A text field where the parameter of the selected action is entered. For ex-
ample, for the open URL option, the parameter is a hyperlink to the URL, whereas for
the action option, the parameter is the set of instructions to follow. The parameters
for each action are described more in depth in the action menu parameters topic.
This text field has an expand button to its right. When clicked, it displays a text ed-
itor which supports multiple lines, which is particularly useful when the parameter
involves many instructions.

10.3 Events 109

We are now ready to do an exercise and practice the use of events. We focus the atten-
tion on the different execution modes. The purpose of the scene is to include an image
that sticks to the mouse when it is pressed. This exercise’s interactive scene, along with
the instructions to build it, can be found at Algorithms Event. The interactive scene’s file
as such can be found at this link. All these files are also stored in the DescartesJSDocumen-
tation.zip file.

This exercise allows us to see that a condition, by itself, is insufficient to specify what
the event is to supposed to do. The execution parameter further specifies how and when
an event’s action is implemented.

The exercise involves mouse related variables intrinsic to DescartesJS. For more in-
formation, please visit the mouse variables topic. Since conditionals are also involved
throughout the exercise, it may also be useful to review the boolean conditions and oper-
ators topic as well.

Though there is an animate option in the action menu of a button, sometimes a button
used to animate also has other functions besides launching the animation. A workaround
for this is to use calculate as the button’s action, and besides everything else the button is
supposed to do, an variable’s value can be changed. This change in value can then be as-
sociated to the animation via an event. This way, the button does all the other calculations
it needs to do, plus the variable’s value change related to launching the animation.

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Algorithms_Event/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Algorithms_Event/Algorithms_Event_scene.html

110 The Programs tab

11

11
The Definitions tab

Definitions is a tab in DescartesJS that also includes a good deal of a scene’s proper inner
programming. There are many kinds of definitions: variables, which can adopt a value or
the value returned by an expression; arrays, which can be better understood as a variable
name associated to a numbered set of values; matrices, whose functionality is similar to
that of arrays, but involving tow numbered sets of values; functions, which are either ex-
pressions that return a value, or algorithms that comprise a set of different instructions;
and libraries, which are a means to group the other various definitions so as to have a
clearer and better ordered code in this tab.

From here on, we visit each of the definitions in more detail. We also pay special at-
tention to the ways in which these definitions allow for a better, more simplified and agile
handling of the data involved in a scene. They may also be used to significantly reduce the
amount of code in an interactive.

Figure 11.0.0.1 shows the Definitions tab. The element displayed is a matrix. As can be
seen in the figure, this tab also has a left panel where the definitions are listed (in this ex-
ample, there is only one present: the M1 matrix). This panel has all the buttons with which
we are already familiar: the + to add a new definition, the * to clone the selected definition,
the - to delete the selected definition, and the up and down arrows to move the selected
definition up or down in the list. A recent DescartesJS upgrade is a filter. This filter, marked
red in the figure, displays a list when clicked of all the available DescartesJS libraries, as
well as an escena (scene in Spanish) option. Libraries will be dealt with later on. Suffice it
to say that they are compendiums of various definitions used to have a better organization
of the definitions. So, this menu can be used to only show definitions corresponding to a
particular library, or to show the definitions that do not belong to a library, but directly to
the scene (those displayed when selecting the escena option).

11.1 Variable definition

The variable definition involves a variable, which is the identifier of this type of definition.
A value can be assigned directly to the variable in the parameter after the equal (=) sign.
Alternatively, a variable can be also assigned an expression (for instance, 2*3), or even
a function (for instance, abs(z), to calculate the absolute value of a z variable). Since,
in its most general sense, it is assigned a function, this type of definition has fallen into
disuse, and the function definition is now favored over it. More information on this type
of definition can be reviewed in the function definition topic, which will be addressed

111

112 The Definitions tab

Figure 11.0.0.1: The Definitions tab. The red box shows the definitions’ filter.

shortly.

Figure 11.1.0.1 presents an example of the variable definition. Figure 11.1.0.2 shows
the configuration required for the example.

Once again, note that the variable in this example is assigned an expression corre-
sponding to the distance of an (2,3) point to the origin:

√
x2 + y2. The text in the scene

prints the value of v1, the variable’s identifier. Obviously, the x and y variables have been
assigned their respective 2 and 3 values previously. One way to assign them their values
can be via the INICIO algorithm. This way, when the variable does its calculations, the x
and y variables involved are already initialized.

Figure 11.1.0.1: Variable definition example

11.2 Array definition 113

Figure 11.1.0.2: Variable definition example configuration.

• id: A text field with the variable’s identifier. The identifier is the variable, as such,
which holds the value returned by the expression at the right hand side of the equal
(=) sign.

• the value of the variable: A text field, at the right of the equal (=) sign, where a value
or expression (including functions) is entered. The expression is evaluated, and the
value returned is assigned to the variable.

We are now ready to try an exercise to practice and better understand this type of def-
inition. This exercise’s interactive scene, along with the instructions to build it, can be
found at Definitions Variable. The interactive scene’s file as such can be found at this link.
All these files are also stored in the DescartesJSDocumentation.zip file.

This exercise shows that variables can, in their most general functionality, receive a
value from an expression. Functions do the same thing. However, since functions have a
more general functionality (they can receive arguments and behave as cyclic algorithms),
they are usually preferred over variables.

11.2 Array definition

Sometimes, a single variable just is not enough when the programmer wishes to store a lot
of information. Though a lot of different variable could be added, this usually turns out
to be exhausting and the control on single variables is lost when handling many of them.
Arrays are a type of definition that allow us to tackle this problem. You can think of them
as “storage units with many drawers”. The name of the unit is the same, but each drawer
is numbered or indexed.

When an array is added, the name of the storage unit is the array’s identifier. For in-
stance, we can speak of a V1 array. The V letter is used as their default prefixes, since ar-
rays are called Vectores in Spanish. Once an array exists, the value held in its n-th drawer is

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Definitions_Variable/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Definitions_Variable/Definitions_Variable_scene.html

114 The Definitions tab

stored in a variable with the identifier as prefix, followed by the index (n) flanked by square
brackets. For example, if a V1 array has already been defined, its 5th drawer is V1[4]. Note
that the drawers are counted starting from the zeroth one. Hence the relation of the 5th
drawer (counting from 1) with the 4 index in the array (counting from 0). Each index of an
array (each drawer) can store the same type of information as a regular variable: a number
value, or string of characters.

Figure 11.2.0.1 shows the parameters of an array definition. Note that, when adding an
array, it has a few assignments in its main panel. It has a default size 3 value, and so, its first
3 entries are initialized with a zero value. This initial assignments are usually dispensed
with.

Figure 11.2.0.1: Array definition example. Note the default zero value assignments for the
three entries of the array.

• id: A text field where the array’s identifier is entered. The identifier is the means to
make a reference to an array. Each of the array’s entries are referenced to using the
identifier as a prefix, followed by the index of the entry flanked by square brackets.
Remember the index starts counting from zero. For example, the 3nd entry of a Vc
array is Vc[2].

• evaluate: A menu with a single only once choice. This option refers to whether it
is evaluated when the user interacts with the scene, or only at the beginning. It is
usually ignored, since it has only this option. When the contents of an array are to
be modified, this is usually achieved via a function, and so the evaluate parameter
can be safely ignored.

• size: A text field where the number of entries (of drawers) are entered. Remember
that if n entries are considered, the highest index available is then n-1, since the
starting index is 0 rather than 1.

11.2 Array definition 115

• array’s initial assignment panel: A multi-line text central panel where several as-
signments are done. Though this panel is related to the array, its assignments need
not only deal with the array’s entries. Other variables may be initialized here as well.
As mentioned, since entries are usually assigned values via a function, this panel is
frequently left blank.

• file: Array entries can be initially filled using data from a text file. This file parameter
is the text field where the path leading to such a file is entered. The path is relative
to the location of the scene’s html file. This is particularly useful when dealing with
very large arrays which require being loaded from the results of, say, a simulation.
In such examples, entering the data by hand can prove to be tasking and prone to
mistakes.
The recommended text coding for the file is UTF-8. Each entry value assignment is
entered in a new line.
This file-to-array functionality is available both in the editor as in browsers such as
Mozilla Firefox. In Chrome, this functionality may not be initially visible. There may
well be trouble reading the file due to some of the browser’s security settings. How-
ever, it is possible to disable them in Windows using the �disable-web-security

tag when launching the browser from a command window.
In order for an html scene generated in DescartesJS to successfully assign values
from a file to an array, the scene’s html file must first be saved in some folder and
the path to the text file should be a valid one relative to the scene’s location. Other-
wise, the text file will not be found.
It is also possible to save the text file inside the scene’s html file as a script. Fig-
ure 11.2.0.2 shows an example of the scene’s html file code with a script block near
the end of the file. The DescartesJS code is the one in the block above, inside the
<ajs></ajs> block. After all that block, and its contiaining div block, the script
block can be found. The entries will be assigned the values in the list. The file param-
eter of the array definition for this example should be the same as the indicated in
the scripts id (that is, ./fle.txt). Note that the script’s type involves a vectorFile,
since arrays are called vectors in Spanish. For a V1 array, its entries will be assigned
the values listed in the script. Some browsers’ security settings do not allow them to
read data from local files. This may result in a DescartesJS scene not being able to
read a text file holding the values. However, if the data is embedded in the html file
via a script, then it can be successfully read. Though this constitutes a workaround,
it is important to be aware that this may result in large sizes for the scene’s file.
An array can initially be filled using a text file as described above. If the programmer
wishes to include the file’s data also as a script inside the html file, it is first neces-
sary to have the array sub-option marked in the Add To HTML option of the Options
menu is selected. When the scene’s file is saved, it can then be opened in a text ed-
itor and the corresponding script block is present near the end of the file. For more
information on the aforementioned option, review the Add to HTML topic.

Now that we are more familiar with an array’s functionality, let us do an exercise in

116 The Definitions tab

Figure 11.2.0.2: Array Script inside the scene’s html file. An array’s entries can be filled
from this data.

which a couple of die are thrown, and a frequency table is built for all the possible results
of adding the die’s values (the possible values ranging between 2 and 12). The frequencies
are saved as values of an array’s entries. This exercise’s interactive scene, along with the
instructions to build it, can be found at Definitions Array. The interactive scene’s file as
such can be found at this link. All these files are also stored in the DescartesJSDocumenta-
tion.zip file.

This exercise can be used to show how, when throwing 2 die, it is more likely to get a
value sum of 7 than any other value sum. This responds to the fact that to get a 2 sum, each
dice has to have a 1 value, whereas to get a 7 sum, there are many more configurations: 1
and 6, or 2 and 5, or 3 and 4, or 4 and 3, or 5 and 2, or 6 and 1 (6 different configurations).
By the way, a suggested extension to this exercise could be to graphically represent the
frequencies using a histogram. This can be achieved by using a family of rectangle graphic
objects.

We were also able to see that arrays reduce the programming work. Instead of adding
11 different variables, a singe 11 entry array was used. Array’s indexes can also be related
more easily to graphic objects (the printed text in this example). If 11 variables were used
instead of the array, 11 lines of text would have been necessary, instead of a single line of
text while using the family functionality of graphic objects.

Since functions are the most useful choice to assign values to array’s entries, please be
sure to review the function definition topic. Another functionality used in this exercise was
the use of the rnd variable to generate random values. The DescartesJS general variables
topic contains more information on this functionality.

One other thing: it is always good practice to declare first the array and afterwards
the function (or functions) handling it. This means it is better to place the array before
the function using it in the list of definitions in the panel a the left inside the Definitions
tab. DescartesJS usually no longer presents a problem if this instruction is not followed.
However, it is a suggestion to potentially improve the scene’s performance.

Finally, note the close relationship between functions and arrays (which is also exten-
sive to functions and matrices). A cyclic algorithmic function can be made to sweep a

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Definitions_Array/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Definitions_Array/Definitions_Array_scene.html

11.3 Matrix definition 117

value related to the index of an array. In this way, a few lines of code can assign value to a
great number of entries.

11.3 Matrix definition

We have just seen how powerful a tool arrays can be. However there is an even more pow-
erful tool at storing information known as a matrix. Instead of handling entries only via
one index, it uses two. So, a matrix can be thought of as a two dimensional unit comprised
of lines and columns. One index handles in which line the drawer is, while the other han-
dles in which column it is found.

Matrices can be thought of as a table of values as in a spreadsheet. To point to a specific
value of the table, the square brackets following the matrix’s identifier now hold not one,
but two, different positive integers separated by a comma. For instance, M[3,7] would be
the fourth column, eighth row entry of the matrix with an M identifier. Remember the
indexes start counting from 0 and not from 1; hence the 1 unit discrepancy. The notation
is, therefore, M[#column,#row].

Figure 11.3.0.1 shows the parameters related to a matrix.

Figure 11.3.0.1: Matrix definition example.

• id: A text field for the matrix’s identifier. Whenever a reference to a matrix is made,
it is done via its identifier. As already mentioned, the reference to a particular entry
is M[#column,#row].

• evaluate: A menu with a single only once choice. This option refers to whether the
entries of the matrix are evaluated when the user interacts with the scene, or only
at the beginning. As with arrays, it is usually ignored, since it has only this option.
When the contents of an matrix are to be modified, this is usually achieved via a
function, and so the evaluate parameter can be safely ignored.

• columns: A text field to enter the number of columns making up the matrix. Since
matrices are two dimensional, they have a columns and a rows parameter; not only
a size one as arrays.

118 The Definitions tab

• rows: A text field to enter the number of rows making up the matrix.

• matrix’s initial assignment panel: A text introduction panel where the initial as-
signments for the entries of the matrix may be entered, as well as other instructions
not necessarily related to the matrix. As with arrays, it is usually left blank since
assignments are typically done via a function.

We can now do an exercise to note the usefulness of the matrix element. This exercise
handles a large number of particles contained in a box. Some are red and some are blue.
The color and initial positions are assigned randomly. Each particle has two coordinates
(a particle’s horizontal and vertical components). This exercise’s interactive scene, along
with the instructions to build it, can be found at Definitions Matrix. The interactive scene’s
file as such can be found at this link. All these files are also stored in the DescartesJSDocu-
mentation.zip file.

This exercise shows how matrices allow for an easy manipulation of large amounts of
data. Had this scene been attempted using arrays only, several arrays would have been
necessary (one dealing with a particle’s color, and a couple other dealing with its compo-
nents). Other examples could possible require even more elements, and therefore more
arrays. Matrices allow to join all these into a single identifier. This, in turn, allows for an
agile an compact data manipulation.

Through this exercise, we were also made aware that a same matrix can handle differ-
ent types of data. Some entries stored numeric data (the coordinates), while others stored
a character string (blue or red).

Furthermore, note that it was a function again which dealt with assigning the values
for the matrix’s entries.

Conditionals were also used to assign the color of the particles. The boolean conditions
and operators topic can be reviewed for more information. Additionally, since the color of
the particles were changed, remember the color editor topic deals with this functionality.

11.4 Function

Functions involve a set of instructions grouped under a same entity: the function itself.
These instructions can be set to loop given a certain condition, or can be implemented
only once. All this is decided depending on the expected functionality of the function.
Functions may well be considered the nucleus around which the general programming of
a scene is gathered.

Figure 11.4.0.1 shows the elements of the function type definition.

• identifier of the function: A text field where the identifier is entered. For functions,
the identifier is the function’s name itself, and has a set of parentheses where the
function’s arguments are entered separated by commas (,). If the function uses no

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Definitions_Matrix/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Definitions_Matrix/Definitions_Matrix_scene.html

11.4 Function 119

Figure 11.4.0.1: Function definition example.

arguments, the parentheses should still be included, though nothing is entered be-
tween them.

• return value of the function: A text field at the right of the equal (=) symbol, where
a value or expression is entered. This value, or the value of the evaluated expression
here entered, is what the function will return when finished. Functions are some-
times assigned to a certain variable. When the function is run, the variable to which
the function is associated will receive this return value. Functions can sometimes be
set only to run, changing various variables of a scene, without any need to return a
particular value to a variable. When no return value is required, this text field can be
left blank.

• domain or range: A text field where a condition is entered. The function will only be
evaluated in points where the condition is true. For example, a function depending
on x with a (x > 1)&(x < −1) domain will exclude the (−1,1) interval when being
evaluated.

• algorithm: A checkbox that, when marked, enables the functions algorithmic func-
tionality. When enabled, the local, init, do and while parameters are activated.

• local: A text field where the variables that are to be local to the function only are
entered, separated by single commas (,) or semicolons (;). A local variable here en-
tered can only change its value inside the function. Suppose there is an i variable
used both outside the function and inside the function. But they are in charge of dif-
ferent things. You would not want the function changing the value of the i variable
inside the function, and affecting the value of the one outside. So, what DescartesJS
does when this i is entered in the local field, is that it internally assigns it a different
name, so as not to confuse them with outer variables with the same name. However,
if the intention of the function is to change the value of this i to impact outside the
function, then it should not be entered in the local field. The local field therefore

120 The Definitions tab

“protects” same name variables inside the function.
Additionally, it is important to bear in mind that, when a function involves argu-
ments, these are treated as internal local variables as well.

• init, do and while: These text fields behave in the same way as the ones in the INICIO
and CALCULOS algorithms. They are active only when the algorithm checkbox is
marked.

A quick example of a function might help clear some doubts. Consider a calcHyp(x,y)
function with a return value sqrt(xˆ2+yˆ2). Its purpose is to calculate the length of the
hypotenuse given the lengths of the two legs. This function has a calcHyp(x,y) identifier.
The identifier already includes two different arguments, which enter the function as local
variables x and y. Outside the function, the user could assign the value to an hy variable.
For instance, if the lengths of the right triangle are leg1 and leg2, the call to the function
could be hy=calcHyp(leg1,leg2). This passes the lengths of the legs as arguments, which
inside the function will be regarded as the x and y variables. This endows the function
with a general behavior. If another right triangle is present, the same function could be
used just changing the arguments in its call. Note also that the function is assigned to a hy
variable. So the function’s return value (the length of the hypotenuse) is assigned to that
variable.

We now do an exercise to practice the use of functions. The purpose here is to do an
interactive scene that indicates the length of the three sides of a triangle whose vertices
are graphic controls. This exercise’s interactive scene, along with the instructions to build
it, can be found at Definitions Function 1. The interactive scene’s file as such can be found
at this link. All these files are also stored in the DescartesJSDocumentation.zip file.

This exercise involved a single function that returns a value. Note that, in order for
a function to return a value, the text field after the equal (=) symbol has to have the ex-
pression of the value to be returned. In this case, such expression is the square root of
the sum of the square of the legs of the rectangle triangle whose hypotenuse is flanked by
the (ax, ay) and (bx,by) points. Note that the text field can have a value, a variable, or
(as in the present case) an expression for the value to be returned. The returned value is
then assigned to the variable of choice for the function (in this case, the distg1g2 and other
distance variables).

We only calculated three distances. However, they could have easily been twenty, and
a single function would suffice. The function is generic and works as a single instruction
with the potential of being used many times, even though its code is only entered once.

This exercise used g1.x type variables and sqr t () functions. All these variables and
functions are intrinsic to DescartesJS and can be reviewed in the graphic control variables
and functions common to various programming languages topics.

Let us try a slightly different exercise involving a function that does not return a value,
and that is used to do several assignments at a time. The idea behind the scene is for
it to indicate not only the distance between two graphic controls, but also to print the

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Definitions_Function_1/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Definitions_Function_1/Definitions_Function_1_scene.html

11.5 Library 121

horizontal and vertical distances (the absolute horizontal and vertical differences between
the controls). This exercise’s interactive scene, along with the instructions to build it, can
be found at Definitions Function 2. The interactive scene’s file as such can be found at this
link. All these files are also stored in the DescartesJSDocumentation.zip file.

This exercise allowed us to see that, in some situations, functions need not return val-
ues, but only do several calculations. These calculations can be done by turning on the
algorithm functionality of the function. Additionally, not all functions require arguments.
They can directly use the scene’s variables (such as g1.x, g1.y, g2.x and g2.y).

A valid question that arises is: can the instructions inside the function be placed di-
rectly inside the do panel of the CALCULOS algorithm? The answer is yes. However, the
three assignments have to do with a similar objective: calculating distances. So, a better
option is to group them inside a single function, and the function is then called inside the
CALCULOS algorithm. This results in a better ordered program structure. This structure
is more modular. If, at any time, the three assignments need be made elsewhere in the
program, there is no need to do them individually, since a single call to the function takes
care of that.

This exercise used g1.x type variables, sqr t () functions, and abs(). All these variables
and functions are intrinsic to DescartesJS and can be reviewed in the graphic control vari-
ables and functions common to various programming languages topics.

Let us do a more serious exercise with a function that involves the calculation of the
greatest common divisor of two positive integers using Euclid’s algorithm. This exercise’s
interactive scene, along with the instructions to build it, can be found at Definitions Func-
tion 3. The interactive scene’s file as such can be found at this link. All these files are also
stored in the DescartesJSDocumentation.zip file.

This exercise involves a different, more complex, type of function: a recursive or iter-
ative function. In this case, the instructions are repeated while a condition is true. After
these repetitions, or iterations, the function spits out a value: the greatest common divi-
sor, or gcd. Note that this gcd is useful to simplify fractions. This is done by dividing the
numerator and denominator by their gcd. It can also be used to calculate the least com-
mon multiple (lcm) of two positive integers. This lcm is obtained by dividing the product
of the numbers by their gcd.

A boolean condition is used in this exercise in the while parameter of the function. This
functionality can be reviewed in the boolean conditions and operators topic. Additionally,
an ent() function was used. This function, along with many others, is addressed in the
functions common to various programming languages topic.

11.5 Library

Certain DescartesJS scenes can be complicated enough to contain a lot of elements in the
Definitions tab. This may result in difficulty finding one particular element. Besides, some

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Definitions_Function_2/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Definitions_Function_2/Definitions_Function_2_scene.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Definitions_Function_2/Definitions_Function_2_scene.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Definitions_Function_3/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Definitions_Function_3/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Definitions_Function_3/Definitions_Function_3_scene.html

122 The Definitions tab

elements in a scene may require constant upgrades, and should be readily available, while
others may be set in stone since their functionality is static.

The library definition is a tool which allows the grouping of certain definitions. Which
to group depends on the programmer. However, certain definitions which serve a single
purpose, or do similar actions, may be grouped together in a library. And once they reach
their end state and are not to be subjected to further edition, the definitions can be stored
in a library if the programmer sees that as a good option.

Placing definitions as a part of a library also makes it easier for the programmer to find
them. There filter functionality already discussed in Figure 11.0.0.1 allows the user to only
display the definitions of a selected library, or those of the scene (those not grouped as a
library).

A library is stored as a text file. The path to it is given relative to the folder where the
scene’s html file is stored. Even though the file is external to the scene itself, its information
can also be included inside the scene’s html code.

Figure 11.5.0.1 shows the configuration of a library. Its text file is stored in a libraries
folder placed in the same folder as the scene’s html file. The example in mind is a group
of definitions dealing with the engine of a mechanical simulation. The simulation engine
description is entered in its info panel, so that the programmer can easily find all the defi-
nitions of this engine neatly grouped.

Figure 11.5.0.1: Library definition example.

• file: A text field where the path to the library’s text file is entered relative to the scene’s
html file folder.

• doc: A mutli-line text panel where the programmer writes down notes, reminders,
definitions, pointers, etc. related to the library. The text entered there is not code, so
it will not impact on the scene’s functionality in any way. It is for the programmer’s
benefit only, and is therefore not intended for the end user.

A library can be imported in different scenes. So, it is also a way to optimize code by
avoiding its repetition in different scenes. And, if the library is to be embedded as part of
the scene’s html code, it can be directly edited when editing that particular scene.

11.5 Library 123

Let us try an exercise to have a better grasp of this functionality. This exercise’s interac-
tive scene, along with the instructions to build it, can be found at Definitions Library. The
interactive scene’s file as such can be found at this link. All these files are also stored in the
DescartesJSDocumentation.zip file.

This exercise has many interesting features. On the one hand, we see that functions
that have been completely defined and need not further changes (such as CalcAverage()
and CalcStdDv()) can be stored in a library so they are not in the way when searching
for other specific definitions. This particular example only has two such functions, but a
more complicated scene may have many more. It would prove difficult to find a specific
definition in a scene involving, say, 60 or more definitions. This is where grouping them in
libraries comes in handy.

It is always possible to remove the engine library by extracting its content and adding it
to the Definitions input panel launched by clicking the button at the top of the left panel in
the Definitions tab. This will ensure the definitions are available in the scene’s definitions
filter, and not in the library’s one. If a library is to be removed, it is also a good practice
to remove the information from the script block in the scene’s html file (if it was decided
to show its code via the Add to HTML > library option in the Options menu). Besides
removing the script, the library definitions should be also removed in the Definitions tab.

When manually editing a library text file, the file’s coding should be set to UTF-8 (prefer-
ably without BOM). Many text editors save their file using ANSI coding by default. This
coding frequently enters characters which are not interpreted by DescartesJS, resulting in
failure to input the information correctly. If the file’s coding is UTF-8, the information will
be correctly read.

There is something worth mentioning regarding the exercise. Note that the i variable
used as a counter is used in 3 different functions (AssignValues(), CalcAverage(), and Calc-
StdDv()), this does not constitute a problem. This, however, does not represent a problem,
since each of these functions is completely done at a different moment than when another
is done. A problem would arise if the functions overlapped: if one started while another
was halfway through. For example, when a function calls another inside it, and both have
the same counters, there is bound to be an error. If this were the case, the solution would
be to set the i variable in the functions as a local variable (see the local topic for more in-
formation). All this is also true for the sum variable: both CalcAverage() and CalcStdDv()
functions use the same variable. Yet, since there is no overlap, no problem arises.

Another important detail can be extracted from this exercise: the order in which the
CalcAverage() and CalcStdDv() functions are called. It is imperative to run the former be-
fore the latter, since the latter uses a value required from the former: the average variable.
If they were called the other way around, the average variable would not have the correct
value with which to calculate the standard deviation.

One last thing to notice is that the contents of the engine library in this example can
be accessed via the filter in the left panel of the Definitions tab, only once the scene with
the included library has been saved. Once the library is selected in the filter menu, its

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Definitions_Library/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Definitions_Library/Definitions_Library_scene.html

124 The Definitions tab

definitions appear listed in the panel (they are filtered from all the definitions associated
to the scene). There, the individual definitions can be selected and edited as well. Any
edition performed in one such definition will also be saved in the library’s text file, and in
the script block inside the scene’s html file code (if the Add to HTML > library option is
implemented in the Options menu) when the scene is saved in DescartesJS. This allows for
a more agile handling of libraries’ information as opposed to manually editing the script
block and the text file.

Having the script block present as part of the scene’s html file ensures the library’s
code will always be available. In some situations, a web browser will not have permission
to access content external to the html file being displayed. This results in the library’s
definitions not being available. However, if the library is stored in the script block, they
will be available even of the text file is missing.

Note that text files need not have their txt file extension. If they do, however, the file
extension must be included in the file parameter of the library for it to be read correctly.

To get the most out of the libraries, definitions similar to each other, or that deal with a
specific functionality, can be grouped together in the same library. For example, functions
and arrays necessary for a mechanical simulation could be in one. While functions dealing
with the correct placement of graphic objects could be in another. The functions in a
library will be displayed when selecting that library in the Definitions tab filter menu. As
a reminder, the scene option in the filter filters the definitions associated directly with the
scene. And the * option of the menu list the scene’s definitions along with the libraries
included.

A scene may have two identical definitions. For example, consider two functions with
the same identifier, but that follow slightly different instructions. One may be imported
from a library and the other could be set as a function directly belonging to the scene. The
one that takes precedence is the one belonging directly to the scene. Though it is possible
to juggle both, it is better to have only one version. This scenario usually happens when
a function that is part of a library is to undergo further edition. The original is kept in the
library as a backup, and its copy is placed as though it belongs to the scene. The copy
is the one being edited and tested. And, since it is in the scene, the programmer knows
this is the one being tested. Once its correct functionality is confirmed, the backup can be
overwritten with the new version, both in the script block and in the library text file.

Once again, remember that arrays read from file, as well as libraries, can have their
information stored inside the scene’s html code via a script block. To do this, the Add to
HTML submenu in the Options menu (in the DescartesJS main editor) should have the
array and library options marked. All the options in this submenu are marked by default.
Thanks to this default behavior, the respective script block was always present in the html
code when the exercises’ final scenes were saved.

12

12
The Animation tab

Animations are used to visualize changes in the scene in real time, instead of skipping
directly from one state of the interactive to another. They allow the user to see how the
scene changes as time goes by. Since time is involved, it is necessary to indicate how fast
time is to move in the animation. And, evidently, what is to change in each step of the
animation.

Animations can by cyclic (when they reach the end of the animation, they start from
the beginning again). They can also be set to start immediately when the scene is launched,
or respond to the user’s interactions.

Animations share the algorithmic functionality present in the INICIO, and CALCULOS
algorithms; and available also in functions. This means they have the init, do and while
parameters as well.

Figure 12.0.0.1 shows the contents of the Animation tab.

Figure 12.0.0.1: The Animation tab.

• Animation: When this checkbox is marked, all the parameters in this tab are acti-
vated, and an animation can be configured. If a scene does not involve an anima-
tion, this checkbox should be cleared.

• pause: A text field where a value or an expression is introduced. It is read as the
number of milliseconds comprising the pause between succesive loops in the ani-
mation. Animations involving very many or numerically complex instructions may

125

126 The Animation tab

exceed the pause time indicated in this parameter. However, if the instructions are
straightforward, this time interval is likely to be respected.

• auto: When this checkbox is marked, the animation will start immediately when the
scene is loaded. The user needs not manually activate it.

• loop: If this checkbox is marked, the animation will loop indefinitely, regardless of
any condition entered in the while parameter. Checking this box is equivalent to en-
tering a 1 in the while parameter (remember 1 is true, and will therefore implement
an indefinite looping of the animation).

• init, do and while: These text fields are the generic ones found in algorithmic func-
tions and in the INICIO and CALCULOS algorithms, and can be reviewed in the INI-
CIO topic.

When an animation is running and the gear button is clicked to launch the scene’s
configuration editor, the animation pauses. This avoids unnecessary processing when the
attention is not focused on the scene itself.

We now build, as an exercise, a scene that simulates the seconds and minutes hands
of a clock. This exercise’s interactive scene, along with the instructions to build it, can be
found at Animation 1. The interactive scene’s file as such can be found at this link. All
these files are also stored in the DescartesJSDocumentation.zip file.

This exercise involved a simple animation, where only the value of one counter is rel-
evant. Animations can be potentially much more complicated and even involve complex
functions in each loop. Note here that the 1000 ms pause in this example corresponds al-
most exactly to a second between ticks in the real world. This is only possible because the
instructions done in each loop are done almost instantaneously (the processor does them
almost immediately). However, when using very complex instructions, or a great number
of them, the processor may take some real time to do them, and the time between ticks in
real time may exceed the one indicated in the pause parameter.

Sine and cosine trigonometric functions were used in this exercise. Note the angles
are handled in radians. The functions involved can be reviewed in the functions common
to various programming languages topic. A boolean condition was also entered in the
while parameter of the animation. These can be reviewed in the boolean conditions and
operators topic. Finally, the colors of the hands were changed. More information on this
functionality is available in the color editor topic.

Let us do a second exercise involving more complex animations. This exercise’s in-
teractive scene, along with the instructions to build it, can be found at Animation 2. The
interactive scene’s file as such can be found at this link. All these files are also stored in the
DescartesJSDocumentation.zip file.

So as not to start from zero, this exercise is done by editing the scene resulting from
the matrices exercise (Definitions Matrix). This exercise used a matrix to store the parti-
cles’ positions. It might be a good idea to review that exercise first before attempting the
animation related one.

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Animation_1/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Animation_1/Animation_1_scene.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Animation_2/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Animation_2/Animation_2_scene.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Definitions_Matrix/index.html

127

This exercise builds on the previous one in that the particles are now animated. The
can be said to follow a sort of brownian motion (they move as specks of dust in the air).

This exercise uses an animation that does something more complicated in each step. It
calls a function which changes the positions of the particles by randomly changing values
in their defining matrix. The function is run, changing the positions of all particles, and
then the animation is refreshed. The end result is that the user sees all particles change
position simultaneously.

In a part of this exercise, both the animation variable and the function index variable
were the same: ianim. Any conflict that could result from having both change the value
of the variable could be avoided by entering ianim in the function’s local parameter. This
results in the program treating the function one as a protected, different variable, and so
changes in the function would not impact the ianim variable of the animation. However,
we decided against this, and in favor of changing the name of the function’s index variable
to i, since it is better practice to have different names for variables dealing with different
aspects of the interactive scene.

We used boolean conditions in the while parameter of the function and animation,
and in the assignment of new values for the particles’ positions. Remember the boolean
conditions and operators topic can be reviewed should questions arise.

128 The Animation tab

13

13
DescartesJS intrinsic functionality

DescartesJS has many functions and variables already built in. This saves the programmer
the trouble of programming the most basic ones.

Since there are many such variables and functions, it may be difficult to recall them all.
This section can therefore be thought of as a rapid access to all this DescartesJS intrinsic
functionality.

As in previous sections, some exercises are included that involve various of the most
important functions and variables.

13.1 DescartesJS intrinsic variables

DescartesJS has many variables related to the properties of spaces, to the state of the mouse,
to the state of graphic controls, etc. Many of these variables have a twofold functionality:
on the one hand, their values provide information about the interactive scene (for exam-
ple, the scale of a space); and on the other hand, the user can modify their values, thus
modifying the properties of the interactive scene (for example, the scale of a space once
again). We now list these variables depending on the type of action they do, or the func-
tionality group to which they belong.

13.1.1 Space variables

Space variables store the width, height, offset and scale of a space. They also allow the user
to control these features.

For a given space, its identifier, followed by a period, is the prefix of its space related
variables (<space id>.) For example, the scale of a space with an E1 identifier is related to
the E1.escala variable.

• <space id>._w: This variable is related to the width of the space in px (hence the _w
suffix).
For example, we can print the value of the Sp._w variable to know the width of a
space. It can be used to control the width in spaces with their resizable checkbox
marked.

• <space id>._h: Its functionality is the same as the ._w variable, but it is related to the
height of the space.

129

130 DescartesJS intrinsic functionality

• <space id>.Ox: This variable is related to the horizontal (hence the x) offset (hence
the O). A plane’s origin is centered in the space by default. This offset represents the
number of px that the origin of the space is shifted to the right from the center of the
space. Leftward shifts are represented by negative values.
This value can be used to inform the value and can be edited to set the space’s hori-
zontal offset. It is associated to the O.x parameter present in 2D spaces.

• <space id>.Oy: The same as the .Ox suffixed variable, but related to the vertical off-
set. Negative values are associated with upwards shifts and positive ones to down-
ward shifts.
Assigning it a value will change the value of the vertical offset. It is associated to the
O.y parameter present in 2D spaces.

• <space id>.escala: Escala is scale in Spanish. So, this variable is related to the scale
of the space: the number of px comprising a unit length in the cartesian plane.
The variable can be printed to know the scale value, or a value assigned to it to
change the scale of the space in question.

• <space id>.rot.y: This variable is only valid in 3D spaces. It stores the rotation (in
degrees) of the space around the y axis.
The default perspective from which 3D spaces is described as follows: The xy plane
is viewed perpendicularly from the x positive axis; while the y axis points to the right
and the z one upwards. In this default configuration, the .rot.y variable has a zero
value.
The .rot.y rotation can be better understood in the following way: consider the xz
plane is viewed from the positive t axis. The rotation is, then, the number of degrees
of a counterclockwise turn of this plane around the y axis. Negative values of the
rotation are related to clockwise turns.
Besides using it to know the rotation value, this variable can be assigned one to
change the perspective from which the space is viewed.

• <Nombre del espacio>.rot.z: The same as the .rot.y variable, but related to the rota-
tion around the z axis.

By design, only the two aforementioned rotations are available (no .rot.x one is sup-
ported).

Many of the user manual exercises up to this point have used some of these variable,
so no particular exercise is included here.

13.1.2 Mouse variables

Mouse variables are used to identify its state. For example, if its left button has been
clicked, or is being pressed down. Its coordinates relative to the cartesian plane can also
be known using mouse variables.

13.1 DescartesJS intrinsic variables 131

These variables start, as usual, with the identifier of the space on which the mouse
state is checked followed by a period (<space id>.)

• <space id>.mouse_x: This variable is related to the horizontal coordinate, relative
to the plane, where the mouse is clicked or dragged. The value is only refreshed if
the mouse left button is active. If the mouse is just hovered around the value does
not change.
This variable is only informative. Its value can be printed, but no value assignment
can be made to it.
For example, Sp.mouse_x holds the horizontal coordinate of the mouse click when
used on a space with a Sp identifier.

• <space id>.mouse_y: The same as the .mouse_x suffixed variable, but for the vertical
coordinate relative to the plane.

NOTE: It is possible for these variable to refresh their values even when the mouse is
only hovered around. However, in order for this to work, the sensitive to mouse
movements checkbox of the space (having the space in question selected in the
Spaces tab) has to be marked. However, as already mentioned, this involves a lot
of inner calculations that may impact on the scene’s performance. So, it is recom-
mended not to use this functionality save in cases in which it is absolutely necessary.

• <space id>.mouse_clicked: This binary variable has a 1 value when the mouse has
been clicked at least once on the associated space, but is not being currently clicked.
It has a zero value if the mouse has never been clicked on the space, and when it is
continuously pressed down, rather than clicked. Another way to understand this is
that its value is one after releasing a mouse click.

• <space id>.mouse_pressed: Another binary variable with a 1 value when the left
mouse button is being continuously pressed down, and 0 otherwise (its value re-
turns to zero after releasing a mouse click.

We now do an exercise that may help clear doubts regarding the mouse variables func-
tionality. Additionally, this exercise shows a way to know other states of the mouse not
included in the DescartesJS intrinsic variables. This exercise’s interactive scene, along with
the instructions to build it, can be found at Mouse. The interactive scene’s file as such can
be found at this link. All these files are also stored in the DescartesJSDocumentation.zip
file.

We see in this exercise that new states of the mouse can be known using states of the in-
trinsic mouse variables. This comes in handy since it is sometimes necessary to know, for
instance, when the mouse is being dragged (some scenes require launching events when
the mouse is being dragged or after release). Note that the CALCULOS algorithm is used
since we need to know the values of the variables constantly while the user is interacting
with the scene (by manipulating the mouse). In the exercise, precise instructions were

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Mouse/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Mouse/Mouse_scene.html

132 DescartesJS intrinsic functionality

entered to calculate the new states of the mouse. We now analyze just how the variables
change values in the scene, so as to remove the mystery of why those assignments were
made.

• The MPA auxiliary variable starts with a 0 value. When we press the mouse, the
CALCULOS algorithm is executed. Note that MP=1 so, naturally, !MP=0. MPA=0 so,
naturally, !MPA=1. So,
MDown=1&1=1,
MDragged=1&0=0, and
MReleased=1&(!1)=1&0=0.
Of MDown, MDragged and MReleased, the only variable with a 1 value is MDown, as
expected.
The end value of MPA is 1, since at the end it is assigned the value of MP.

• The MPA auxiliary variable starts now a value of 1 (see the previous bullet point).
Therefore, !MPA=0. When the mouse is dragged while pressed, the CALCULOS algo-
rithm is executed again. The MP variable has a value of 1, since the mouse is being
pressed. So, therefore, !MP=0 again. MPA is still 1 and, consequently, !MPA=0. Using
these values,
MDown=1&(!1)=1&0=0,
MDragged=1&1=1, and
MReleased=1&(!1)=1&0=0.
Of MDown, MDragged and MReleased, the only variable with a 1 value is MDragged,
as expected.
The end value of MPA is 1, since MP is still 1 (the mouse is being pressed).

• The MPA auxiliary variable starts with a value of 1 (see the previous bullet point).
When the mouse button is released, the CALCULOS algorithm is executed again.
Now, MP has a value of 0 (the mouse button is no longer pressed). So, !MP=1. MPA
still carries its 1 value, so !MPA=0. Using these values,
MDown=0&(!1)=0&0=0
MDragged=0&1=0
MReleased=1&(!0)=1&1=1
Of MDown, MDragged and MReleased, the only variable with a 1 value is MReleased,
as expected.
At the end of the algorithm, MPA is assigned the value of MP. So, both MP and MPA
end up with a zero value. The initial configuration is thus recovered.

We see that the MPA auxiliary variable plays a fundamental role in determining the new
states of the mouse. Using these simple instructions, it is possible to ascertain whether the
mouse has just been clicked, if it is being dragged, or if it has been released.

This exercise involves quite a few conditions. For more information regarding this
functionality, visit the boolean operators and conditions topic.

13.1 DescartesJS intrinsic variables 133

By the way, even though we refer to mouse manipulations throughout this topic, the
mouse variables functionality extends to mobile devices, in which the pressing is done by
pressing the finger down on a space, releasing is done by lifting the finger, and so on.

13.1.3 Text field control variables

There is only on text field control variable. It is built using the control’s identifier and
appending .active (.activo is also supported). As an example, the variable associated to a
text field control with a t1 identifier would be t1.active (or t1.activo). This variable has a 1
value when the field is being interacted with, and 0 otherwise. This variable is read-only,
meaning the user can only change its value by interacting with the control, and not by
directly assigning it a value.

13.1.4 Graphic control variables

Graphic control variables are used to know the coordinates of a graphic control relative to
the cartesian plane. Values can also be assigned to them in order to place a graphic control
in a particular point in the space. They can also be used to know if a certain graphic control
is active or not.

The identifier of the graphic control, followed by a period, is used as a prefix in these
variables (<gc id>.) For instance, a g1 graphic control has a g1.x variable related to the
controls horizontal coordinate.

• <gc id>.x: This variable can be printed to know the value of the horizontal coordi-
nate of the graphic control relative to the cartesian plane. It can be assigned a value,
and the control will place itself in that horizontal coordinate. For a control with a
grph identifier, the variable would be grph.x.

• <gc id>.y: The same as the .x suffixed variable, but this one is related to the vertical
coordinate.

• <gc id>.active (<gc id>.activo is also supported): This variable has the state of activ-
ity of a graphic control. If the control is active, the variable’s value is 1, and otherwise
0. A graphic control is considered active when it is being dragged, or if it is still se-
lected because it was the last object with which the user interacted. It will remain in
its active state as long as it is selected, and it is necessary to click elsewhere in the
space to revert the control to its inactive state.

It is time for an exercise to practice the use of graphic control variables. This exercise’s
interactive scene, along with the instructions to build it, can be found at Graphic control.
The interactive scene’s file as such can be found at this link. All these files are also stored
in the DescartesJSDocumentation.zip file.

This exercise shows us how to use the graphic control variables to determine the coor-
dinates of a certain point in the cartesian plane, as well as to place graphic controls at will

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/GraphicControl/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/GraphicControl/GraphicControl_scene.html

134 DescartesJS intrinsic functionality

at a given location. Knowing the coordinates of a point is sometimes useful when placing
objects such as text graphic objects. Other situations sometimes require a certain action
be taken when a graphic control is manipulated, or when it crosses a certain part of the
space. And yet another situation that often happens is that a graphic control is acciden-
tally placed outside the area of a space. This happens, for instance, when the space is not
fixed and the user drags it, along with the graphic control, until the latter lies outside the
space. The control then becomes inaccessible. A workaround is to associate an action of a
certain control to the re-positioning of the graphic control in a spot accessible to the user.

For more information on the type of controls used in this exercise, review the graphic
controls topic.

13.1.5 Audio and video control variables

There is one variable and one function related to audio and video controls. Both use the
control’s identifier, followed by a period, as a prefix (<control id>.)

The variable is <control id>.currentTime, and it stores the time in seconds in which
the control’s playback is currently in. In order for it to update correctly, an animation is
required to be present. There is a <control id>.currentTime(t) function with a different
functionality. This one has function parentheses and an argument, and it can be reviewed
in the audio and video control functions topic.

Feel free to review the Audio control exercise, where this functionality is put to practice.

13.1.6 Array and matrix variables

There is one basic variable related to arrays which stores the size of the array. And there
are a couple of variables related to matrices, one which stores the number of columns, and
one which stores the number of rows of a given matrix.

Array variable:

• <array id>.long: This variable stores the size of the array (as in the size parameter of
the array definition). It is basically the number of entries of the array. For instance,
for an array with a V1 identifier which has 5 entries, the value of the V1.long variable
is 5.

Matrix variables:

• <matrix id>.filas: This variable stores the number of rows of a given matrix. filas
stands for rows in Spanish.

• <matrix id>.columnas: This variable stores the number of columns of a given ma-
trix. columnas stands for columns in Spanish.

As an example consider a matrix with an M3 identifier, 4 columns and 5 rows. In this
example, the M3.columnas variable has a value of 4, while the M3.filas variable has
a value of 5.

13.1 DescartesJS intrinsic variables 135

13.1.7 Path variables

There is a means for the user viewing an interactive scene in a server to provide a param-
eter for the DescartesJS scene straight from the path used to open the scene on a browser.
The name of this variable is URL.<tag>, where tag stands for the name of the tag provided
in the path, along with its associated value (which is a character string). This may be hard
to grasp from the description alone, so we include an example.

Consider a DescartesJS interactive scene, stored, on server, in the following path:
https://sitio.abcd.mx/index.html. If the user types this path on the browser, the browser
will open the scene as expected. However, an additional tag may be provided in the path,
along with its desired value. Consider now the following path:
https://sitio.abcd.mx/index.html?view=horizontal. If this path is entered in the browser,
the scene is opened in the browser. But, additionally, a URL.view variable internal to the
scene is assigned the horizontal character string (that is, ‘horizontal’).

To enter a path variable, a question mark (?) is included at the end of the path to the
scene, followed by the name of the tag, followed by an equal (=) symbol, followed by the
character string that will be assigned as its value. It is important to remember that the
inner variable in the scene has a URL. prefix. So, if the tag was wow, the inner variable
would be ULR.wow. If no value is defined for a tag (i. e., if nothing is entered after its =
symbol), the URL.<tag> variable will be assigned a 0 numeric value.

Note that variables set in paths are not defined inside a scene. It is the user who “cre-
ates” them by appending their information at the end of the scene’s server path.

Multiple path variables may be defined in a path; it is only necessary to separate each
from the next with an ampersand (&) character. Consider the following path:
https://sitio.abcd.mx/index.html?view=horizontal&step=7
When this scene is loaded from the server in a browser, the following variables are created
internally: URL.view (assigned a value of ‘horizontal’), and URL.step (assigned a value of
‘7’).

These path variables allow the user to prepare the scene to open under specific set-
tings. Digital interactive book editors created in DescartesJS use this functionality. The
same editor may open a myriad of books present in the server. However, if a specific book
is to be opened, its name could be indicated via a path variable. The view path variable
example has also been used in order for the user to indicate whether the page layout of a
digital interactive book is to be horizontal or vertical.

Path variables only make sense for scene’s stored in a server. If the scene is opened
locally, they are not taken into account.

13.1.8 DescartesJS general variables

There is only one DescartesJS general variable: rnd. This variable, whose name stands for
random, generates a random value in the [0,1) interval (i. e., it can potentially be zero, and

136 DescartesJS intrinsic functionality

its largest possible value is almost 1, but 1 itself not being included). A different random
number is generated when a new reference to rnd is entered in the code. The probability
distribution in this interval is uniform (one number has basically the same chances of
being chosen as any other in the interval).

The rnd variable is frequently associated with functions such as ent(). Some situations
require random numbers to be generated in a different interval from the [0,1) one. Others
may require generating random numbers from a discrete value set. In order to satisfy
such conditions, rnd may need to be operated using basically products, so as to shift, and
“stretch” (or “compress”) the interval. And the ent() function is used to “discretize” the
available values.

All this may be better understood by doing an exercise. The purpose of this exercise is
to generate vertical parabolas using the y = ax2 +bx + c equation. The a coefficient must
adopt random integer values between -3 and 3, but excluding zero (a = 0 corresponds to
a line, not a parabola). The b coefficient must adopt random semi-integer values between
-4 and 4 (i. e., -4, -3.5, -3, ..., 3.5, 4), including 0. And the c coefficient may adopt real values
between 0 and 3. This exercise’s interactive scene, along with the instructions to build it,
can be found at General Variables. The interactive scene’s file as such can be found at this
link. All these files are also stored in the DescartesJSDocumentation.zip file.

This is a complicated exercise, but allows us to understand many aspects. Each vari-
able involved has a different condition regarding the values it can be assigned.

• The value assigned to the a variable is configured as follows:
First, the sign of the variable is set to be positive if the rnd variable is lower or equal
to 0.5 (0.5-rnd is positive in such a case); and negative otherwise (0.5-rnd is negative
when rnd>0.5). This ensures that there is a 50% chance the argument of the sign
function is positive. The sign function then only takes the sign of the argument, so
it will have a 50/50 chance of being positive or negative. This is then applied to the
expression which generates a 1, 2 or 3 value. All this results in the generation of
positive or negative integer values between 1 and 3. It also excludes the possibility
of getting a 0 value.

• The b variable has no non-zero restriction. This simplifies the expression assigned to
it. It is simply the lowest value possible plus the an 8 value (resulting in a maximum
+4 value) broken in 16 parts, so that semi-integers are used.

• The c variable does not have an integer or semi-integer restriction. So, there is no
need to use the ent() function. It is only necessary to scale the rnd interval from [0,1)
to the [0,3) by multiplying times 3.

• The expressions assigned are such that the available values each have the same
probability of being chosen. Take a as an example. The 3*rnd in the expression
generates a random number between 0 and 2.9999... When floored using the ent()
function, only the 0, 1 and 2 integers are extracted, each with almost the same prob-
ability. By adding 1, they are shifted, so the integers become 1, 2 and 3, as desired.

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/GeneralVariables/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/GeneralVariables/GeneralVariables_scene.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/GeneralVariables/GeneralVariables_scene.html

13.1 DescartesJS intrinsic variables 137

• Rich text formatting, as opposed to plain text, allows a single text graphic object to
print different values using different settings. In the present exercise, the difference
was the number of decimals involved.

Yet another important conclusion is extracted from this exercise: the use of debug
texts. The text printed at the end of the exercise allows the programmer to see whether
the program is behaving according to specifications. Maybe this text is not to be showed
to the end user, but the programmer can confirm the variables’ values are within specifi-
cations by printing them. Once confirmed, the text can be removed or simply hidden from
view.

The ent() and sgn() functions were used in this exercise. These functions are already
defined in DescartesJS, and their functionality can be reviewed in the DescartesJS intrinsic
functions topic. The graph included corresponds to a type of graphic object, which can be
reviewed in the equation graphic topic.

13.1.9 Numerical constants

There are two numerical constants pre-defined in DescartesJS. One is pi, a numerical ap-
proximation ofπ; and the other is e, a numerical approximation of Euler’s number (Napier’s
constant). The user may print their values or use them in expressions.

It is possible to redefine their values by assigning them a new one. However, in order
to avoid confusion, we recommend not changing their values.

13.1.10 Information and customization variables

• device: a variable which, when printed, indicates via a text string the type of device
in which the Descartes scene is used. The options are desktop (a computer), tablet
and mobile (a mobile phone).

• dispositivo: a variable equivalent to the device one mentioned above (dispositivo
stands for device in Spanish).

• _NUM_MAX_ITE_ALG_: a variable which contains the maximum number of itera-
tions Descartes allows in an algorithm with repetition. It was originally set to 100,000
iterations (the variable’s default value). The purpose of this number is to stop an
endless loop which would render a scene inoperable, usually following an error in
the user’s code. However, since it may be desirable to exceed this limit, particularly
when using Descartes to perform simulations, the user may reassign a new, larger
number to this variable, thus allowing for more cycles in an algorithm.

The device and dispositivo variables are useful, since they allow a control with the vir-
tual keyboard enabled to be displayed depending on whether the scene is opened in a

138 DescartesJS intrinsic functionality

computer, tablet, or phone. A control, which has the virtual keyboard disabled, can be dis-
played in a scene if it is opened in a computer. Another control, with the virtual keyboard
enabled, can be displayed in its stead if the scene is opened in a tablet or phone. Remem-
ber that the device’s native keyboard is displayed by default in tablets and phones, and this
keyboard usually takes up a lot of space, thus reducing the size of the scene and breaking
its aesthetics. However, using the aforementioned approach, the virtual keyboard can be
used instead in a position decided by the programmer, thus in keeping with the aesthetics
and functionality of the scene.

13.2 DescartesJS intrinsic functions

DescartesJS has several intrinsic functions, most of which are available in almost any pro-
gramming language. However, there are some particular to DescartesJS related to audio,
video, expressions’ evaluations, etc. which will be reviewed in short. The functions here
reviewed are categorized according to their functionality.

13.2.1 Common functions

There are several functions in DescartesJS common to various programming languages.
These are listed alphabetically. Most of them are mathematical functions. Some functions’
names may vary, but their functionality is preserved.

• abs(x): This function receives a numeric argument x and returns the absolute value
of the same. Example: abs(-2) will return a 2 value.

• acos(x): This function receives a numeric argument x and returns the arc cosine
function (the angle, in radians, whose cosine is x). For example, acos(-1) will return
a 3.141592... value (which corresponds to 180°).

• _AnchoDeCadena_(string,font,style,size): This function receives four arguments
and returns a positive integer, which corresponds to the length (in pixels) of a string
of characters printed using the formatting indicated by each argument. ancho de ca-
dena is string length in Spanish. string is a character string, font stands for the font
used (the available options are ‘Monospaced’, ‘Serif’ and ‘SansSerif’), style stands for
the the style attributes (the available options are ‘PLAIN’, ‘ITALIC’, ‘BOLD’,
‘ITALIC+BOLD’ and ‘BOLD+ITALIC’), and size stands for the size in points of the
chosen font. The function returns the length in px that the string will have using the
formatting.
For example, _AnchoDeCadena_(‘hi, how are you?’,‘Monospaced’,‘ITALIC+BOLD’,18)
calculates the length (in px) that the hi, how are you? character string will have when
printed in a monospaced font, using italics and bold style, and in an 18 point font.
This function comes in handy, for example, when the programmer needs to know if
a string is long enough so as to not be able to fit in a given space.

13.2 DescartesJS intrinsic functions 139

• asin(x): This function receives a numeric argument x and returns the arc sine func-
tion (the angle, in radians, whose sine is x). For example, asin(1) will return a 1.570...
value (which corresponds to 90°).

• atan(x): This function receives a numeric argument x and returns the arc tangent
(the angle, in radians, whose tangent is x). For example, atan(1) will return an 0.785...
value (which corresponds to 45°).

• ceil(x): This ceiling function receives a numeric argument x and returns the imme-
diately upper integer to x. As examples, ceil(-4.2) will return a -4 value, and ceil(5.2)
will return 6.

• charAt(string,n): A function that receives a character string as its first argument
(string in the example), and a positive integer as the second (n in the example). The
function returns the character found in the string at the n-th position. Counting
starts at zero. For example, charAt(‘Hey there!’,3) will return t. This function is equiv-
alent to its Spanish counterpart, _letraEn_(string,n).

• cos(x): This function receives a numeric argument x, interprets it as radians, and
returns its cosine. For example, cos(pi/2) will return 0. We remember that π

2 corre-
sponds to 90°.

• cot(x): This function receives a numeric argument x, interprets it in radians, and
returns the cotangent, which is the reciprocal of the tangent of that number. The
reciprocal of a number is equivalent to 1 divided by the number. For example,
cot(0.785398163) will return a value near 1, since 0.785398163 radians is near 45°.

• csc(x): This function receives a numeric argument x, interprets it in radians, and
returns the cosecant, which is the reciprocal of the sine of that number. The recip-
rocal of a number is equivalent to 1 divided by the number. For example, csc(pi/2)
will return a value near 1.

• ent(x): From the Spanish word entero, which stands for integer. This function re-
ceives a numeric argument x and returns the integer immediately below this num-
ber. For example, ent(-3.2) will return -4.
Adding a 0.5 value to the argument of this function turns it into a rounding function.
For example, ent(3.78+0.5) will return 4, which is the rounded value of 3.78.
Additionally, note that, when the function’s argument is positive, the function simply
trims the decimals from the number.

• exp(x): This function receives a numeric argument x and returns the Neperian ex-
ponential. For example, exp(2) will return 7.389... (e2 = 7.389...).

• floor(x): This function receives a numeric argument x and returns the integer im-
mediately below it. For example, floor(-4.2) will return a -5 value and floor(5.2) will
return a 5 value.
In this sense, this function does the opposite from ceil(), and is equivalent to the
ent() function.

140 DescartesJS intrinsic functionality

• indexOf(string,str): This function receives two arguments. The first (string in the
example) is a character string of the main text. The second (str in the example) is
a character string of a text potentially present in string. The function returns an
integer: the index of the first found instance of the second text inside the main text.
Counting starts at zero (the first character is indexed as the zeroth). If no instances
are found, a -1 value is returned. For example, indexOf(‘Hi there!’,‘he’) would return
4.

• _índiceDe_(string,str): This is the Spanish counterpart of the indexOf(string,str)
function. It is one of the few functions that involve an accent (the first i in índiceDe).

• lastIndexOf(string,str): This function is similar to the indexOf(string,str) one. It also
receives two character strings as arguments. The first one (string in the example) is
the main string, while the second (str in the example) is the character string of the
text that is potentially present in the main string.
This particular function returns the index (counting from zero) for which the second
string appears inside the main string for the last time. As an example, consider
lastIndexOf(‘This is a list’,‘is’) would return an 11 value (the is inside list is the last
appearing instance of is in This is a list, and it appears in the 11th place if you start
counting from zero).

• _letraEn_(string,n): This function receives two arguments. The first (string in the
example) is a character string. The second (n in the example) is a positive integer,
including 0. n is the index of the character (the count starting from zero) in the
string that the function returns. For example, _letraEn_(‘Salutations’,3) will return
the u character.
This function is basically the Spanish counterpart of the charAt(string,n) one.

• _longitud_(string): longitud is Spanish for length. This function is basically the
Spanish counterpart for the strLength(string) function.

• log(x): This function receives an x numeric value as an argument and returns the
Neperian logarithm of the same. For example, log(7.389056099) will return a value
close to 2, since e2 = 7.389056099....

• log10(x): This function receives an x numeric value as argument and returns its base
10 logarithm. For example, log10(1000) will return a value of 3 since 103 = 1000.

• max(a,b): This function receives two numeric values as arguments (a and b in the
example) and returns the highest one. For example, max(-6,-3.59) will return -3.59.

• min(a,b): This function receives two numeric values as arguments (a and b in the
example) and returns the lowest one. For example, min(-7,-4.2) will return -7.

• raíz(x): raíz is Spanish for root. This function is the Spanish counterpart for the
sqrt(x) one.

• replace(string,str1,str2): This function receives 3 character strings as arguments.
The first one (string in the example) is the main string. The second (str1 in the ex-
ample) is a target string inside the main string. The third one (str2 in the example) is

13.2 DescartesJS intrinsic functions 141

the string that will substitute the target string. The function returns the main string,
but having replaced all instances of the second string with the third string. For ex-
ample, replace(‘123123’,‘2’,‘two’) will return a 1two31two3 character string.

• round(x): This function receives an x numeric value and returns the rounding inte-
ger of the number. For example, round(5.8) will return 6, while round(5.2) will return
5.
The rounding of an x number can be understood as the nearest lower integer of
x+0.5. So, round(x)=ent(x+0.5)=floor(x+0.5).

• sec(x): This function receives a numeric value x, interprets it as radians, and returns
the secant, which is the reciprocal of the cosine of that number. For example, sec(pi)
will return a -1 value.

• sen(x): This function is the Spanish counterpart of the sin(x) function (seno is sine
in Spanish).

• sgn(x): This function receives an x numeric value and, if it is positive, a +1 value is
returned. Otherwise, a -1 value is returned. This way, the function only extracts the
sign of the number, disregarding its magnitude.

• sin(x): This function receives a numeric argument x, interprets it as radians, and
returns its sine value. For example, sin(pi/2) will return a value of 1 (bearing in mind
that π

2 radians are equivalent to 90°).

• sqr(x): sqr stands for square. This function receives a numeric value x as argument
and returns its square. For example, sqr(3) will return a value of 9.

• sqrt(x): It stands for square root. This function receives an x numeric value as argu-
ment and returns its square root. For example, sqrt(9) will return a value of 3.

• strLength(string): This function is used to obtain the length of a character string. It
receives an character string (string in the example) as an argument, and returns the
number of characters included in that string. For example, strLength(‘Salutations’)
will return 11.
This function has a Spanish counterpart: _longitud_(string).

• substring(string,a,b): This function receives 3 arguments. The first (string in the
example) is a character string. The second and third ones (a and b in the example)
are integers which refer to the indexes that flank the substring to extract. As usual,
counting starts at zero. The function returns a character string that is a substring of
the string which goes from the a-th character (including such character) upt to the
b-th one (excluding such character). For example, substring(‘hiya’,1,3) will return a
iy character string.

• _subcadena_(string,a,b): This is the Spanish counterpart for the substring(string,a,b)
function.

• tan(x): This function receives a numeric value x, interprets it as radians, and returns
its tangent. For example, tan(pi/4) will return a 1 value (bearing in mind that π

4 radi-
ans are 45°).

142 DescartesJS intrinsic functionality

• toFixed(x,n): This function receives an x real value as first argument, and an n in-
teger as a second. It returns, in the form of a text string, the real adjusted value of
x using n decimals. For example, consider a graphic text object set to print 7 fixed
decimals. If [toFixed(1/3,3)] is entered in its text parameter, it will print 0.333
instead of the 0.3333333 it would print if only [1/3] were entered.
Note also the difference between what [toFixed(1/3,3)] returns and what is re-
turned by [toFixed(1/3,3)*1]. The first prints only 0.333, since the toFixed func-
tion has precedence over the 7 fixed decimals set for the text graphic. The second
prints 0.3330000 since when it performs the product, its result is considered a new
number, no longer fixed by its toFixed related function factor.
When multiplying numbers returned by the toFixed() function, DescartesJS inter-
prets them as numbers and operates them as such. However, when attempting to
add them, the result is the concatenation of both strings (since toFixed() returns the
numbers as text strings). For example, [toFixed(1/3,3)+toFixed(1/7,2)] will
print the concatenation of both values returned by each toFixed() function. That is,
the concatenation of the ’0.333’ string and the ’0.14’ one. The value printed is the
’0.3330.14’ text string. The _Num_() DescartesJS language function can be used in
order to add them as numbers. Each value returned by the toFixed() function is then
used as the argument of the _Num_() function, which turns the strings to numbers,
and then the values are added. For example, [_Num_(toFixed(1/3,3))+
Num(toFixed(1/7,2))] prints the 0.473 numeric value.

• toLowerCase(string): This function receives a character string (string in the exam-
ple) and returns the same string, but replacing all upper case characters with their
lower case counterparts. For example, toLowerCase(‘Now Everything Is Lower Case’)
will return a now everything is lower case character string.

• toUpperCase(string): This function is similar to the toLowerCase(string) one, but
it converts all characters in the string to their upper case. For example, toUpper-
Case(‘Now everything is upper case’) will return a NOW EVERYTHING IS UPPER CASE
character string.

• trim(string): This function receives a character string as argument (string in the
example) and returns the same string after having trimmed it of any leading, and
trailing, blank or space character. For example, trim(‘.’+‘ Hi ’+‘.’) will return a . Hi .
character string, while ‘.’+trim(‘ Hi ’)+‘.’ will return a .Hi. character string. Note that
the first example finds no trailing blank spaces in the argument of the trim function
since the periods are the first and last characters. The second example does trim
blank spaces and then concatenates the trimmed text to the preceding and trailing
periods.

There are also some hyperbolic trigonometric functions (sine, cosine and tangent).
They are the same as the common functions, but an h has to be appended at the end of
the function (sinh(), cosh(), and tanh()).

It may be necessary sometimes to obtain logarithms in bases different from e and

13.2 DescartesJS intrinsic functions 143

10. The loga(x) = l og (x)
log (a) property (or, alternatively, the loga(x) = l og10(x)

l og10(a) property) can
be used to define a function which returns the base a logarithm of a number. For ex-
ample, a logbase(a,x) function can be added in the Definitions tab with a return value of
log10(x)/log10(a). This function receives the value of the base (a) and the number for
which the logarithm is to be extracted (x); and it returns the value of loga(x).

13.2.2 DescartesJS language functions

There are a few functions unique to DescartesJS. One of them is _Eval_(string). This func-
tion receives a character string argument (string in the example), and evaluates it as a
mathematical expression. This has the potential to even let the user write down a function
to be evaluated and then graphed.

As a first example, consider a text graphic object which has [_Eval_('sin(pi/6')]
entered in its text parameter. If the changes are applied, the printed text should be 0.5.
In this example, the character string was the expression sin(pi/6) to evaluate. This shows
how DescartesJS uses this function to interpret a string as a math expression. If there is an
assignment such as c1=`sin(x)' elsewhere in the scene, _Eval_(c1) will be associated to
the sine function applied to the x variable. Thanks to this, DescartesJS is not constrained
to graphing equations provided solely by the programmer, but makes it possible for the
end user to enter functions of his/her own.

An exercise is in order, and it will likely clear some of the confusing aspects of this
function. On the one hand, this exercise shows how the end user can graph a function of
his/her own. On the other, the function can be evaluated at a specific value of its indepen-
dent variable. This exercise’s interactive scene, along with the instructions to build it, can
be found at Descartes Functions. The interactive scene’s file as such can be found at this
link. All these files are also stored in the DescartesJSDocumentation.zip file.

There are several things worth pointing out in this exercise:

• Whenever the _Eval_() function is used, its argument has to be a character string.
This means that, if its argument is a variable, this variable should contain a character
string. If it is a text field numeric control, it should preferably be text-only. And its
initial value should preferably be flanked by single quotes. For example, if a numeric
control’s value is 1 instead of ‘1’, errors may appear when trying it as an argument of
the _Eval_() function.

• The code is clearer and easier to manipulate when text field evaluations are ap-
pointed to functions.

• There is a difference between the evaluation of a function along an entire domain
and only at a given value. The equation graphic object draws the fn() function (which
has no arguments), while the fn2(x) function (which has an argument) is evaluated
in only one point. Consider a case in which a student is asked to enter a formula as
an answer to a question. There may be subtle differences between the same formula

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Desc_Functions/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Desc_Functions/Desc_Functions_scene.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Desc_Functions/Desc_Functions_scene.html

144 DescartesJS intrinsic functionality

(for instance, x*x is the same as xˆ2). A way to know whether the one provided by the
student is correct or not is to evaluate it at different points and compare the value of
each to that of the target formula’s evaluation in the same points. If they match in all
cases, the student’s formula is most likely correct.

This exercise involves graphing some common functions. More information on these
is provided in the functions common to various programming languages topic. The text
field numeric control topic may also be of interest to the reader, since they were used twice
in the exercise.

The _Eval_() function can also be used to assign values to variables. By this we do
not mean assigning the function’s return value to a variable, but rather to implement the
assignment of a value to a variable as part of the evaluation. A special combination of
symbols is used for such a purpose: :=. Left of this symbol is the variable to which the
value is assigned, and to the right, the value. Boolean conditions can also be implemented
inside the _Eval_() function. These use their same symbols as usual. For example, a button
could be set to calculate the following series of instructions:
Eval('zzz:=zzz+1')

Eval('v1:=(zzz%2==0)?1:0')

Eval('v2:=(zzz%2!=0)?1:0')

Eval('v3:=(zzz<=3)?1:0')

We see that the first line assigns zzz+1 to zzz, thus increasing its value by 1. The second
line assigns a variable, v1, a 1 value if zzz is divisible by 2, and a 0 value otherwise. The
third line assigns another variable, v2, a 1 value if zzz is not divisible by 2, and a 0 value
otherwise. Line 4 assigns another variable, v3, a 1 value if zzz is lower than 4, and a 0 value
otherwise. If all four variables’ values are printed, their behavior can be seen. Note that
assignments were all done inside an _Eval_() function.

What is so useful about operating elements inside this function? The answer is that
the variables to which values are assigned can be given by the user, and they need not
be defined by the programmer. Additionally, it has the potential of using a single control
to change the value of a multitude of variables. To illustrate this, we do a brief exercise.
This exercise’s interactive scene, along with the instructions to build it, can be found at
Evaluation assignment. The interactive scene’s file as such can be found at this link. All
these files are also stored in the DescartesJSDocumentation.zip file.

ExecBlock(string,label) is a proper DescartesJS language function similar to _Eval_().
However, this one allows the evaluation of not only one command line, but of a whole
block. The block is flanked by a label whose name is chosen by the programmer, and con-
tains the assignments or instructions. The structure is very similar to HTML. For example,
suppose the following text is entered as a character string in a str variable:
Text beginning

<LBL>

tx=`miscellaneous text'

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/EvaluationAssignments/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/EvaluationAssignments/EvaluationAssignments_scene.html

13.2 DescartesJS intrinsic functions 145

x=2

</LBL>

More code follows...

This text could have be read from a file, for instance. The line skips would then have
to be entered by pressing ENTER in a UTF-8 (without BOM) text editor, or by including
a \n code that is a line break in DescartesJS (in which case the whole of the text would be
run-on). The command _ExecBlock_(str,'LBL')will then search for the text contained
in a block flanked by a LBL label (i. e., between <LBL> and </LBL>), and implement the
assignments found therein. If this example included the printing of the tx and x variables
after executing this block, the x variable would have a value of 2 and the tx one would
contain a character string (miscellaneous text).

An exercise is in order so as to clear as many doubts as possible. This exercise’s inter-
active scene, along with the instructions to build it, can be found at Block execution. The
interactive scene’s file as such can be found at this link. All these files are also stored in the
DescartesJSDocumentation.zip file.

In this example, a block involving a couple of assignments is executed. Both assign-
ments are executed upon calling the ExecBlock() function. And only the commands inside
the block flanked by the LBL label are executed, the rest is ignored. Additionally, when
an assignment contained in the block, such as the numeric assignment x=2, the variable
adopts the 2 numeric value, not the 2 character. Should the need arise to interpret it as
text, the x=`2' would be in order (note the 2 is flanked by single quotes, indicating it is to
be regarded as text).

Num(string) is another proper DescartesJS function which receives a character string
as an argument (string in the example). This character string corresponds to a numeric
decimal expression. The function returns the number as such (as a number, not a string
anymore). If the string is anything different than a numeric decimal expression, the func-
tion returns NaN (not a number). To better understand this function’s usefulness, consider
a t1 text field. A student is supposed to answer 1+2=? in that text field. The correct answer
is 3. However, the student may still type 1+2 in that text field, and upon entering it, the
text field numerically converts it to 3, resulting in a correct verdict. However, since the
idea is for the student to enter 3, the text field’s text ony checkbox can be marked. If the
student enters 1+2, it will no longer be numerically interpreted. Furthermore, _Num_(t1)
will return NaN if 1+2 is entered in the field, since the 1+2 string cannot be numerically
interpreted. However, if the student enters 3 directly, it is converted to a number, which
can later be used to know if the answer was correct or not.

So, this function can be used to avoid the use of DescartesJS intrinsic calculator func-
tionality present for text field controls. This, in turn, forces the student to enter the nu-
merical value of the answer (in exercises that are supposed to work that way).

If the argument of the _Num_() function is a decimal, either comma or period can be
used as a decimal symbol. Please note that, in order for the function to work as described

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Block_Execution/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Block_Execution/Block_Execution_scene.html

146 DescartesJS intrinsic functionality

before when using a text field, the text field must have its text only checkbox marked.

isNumber(x) is a Descartes function which receives an argument (x in the example)
and returns a 1 value if the argument is a real number, or 0 otherwise. This enables
the use of conditionals which depend on whether the argument is an NaN, Infinity or
a character string (in these cases, the function returns a 0 value), or whether it is a real
number (in which case the function returns a 1 value). For example, isNumber(sqrt(-1)),
isNumber(log(-1)), and isNumber(1/0) al return a 0 value, since the argument of the first
two examples corresponds to NaN, and the latter corresponds to Infinity. Contrariwise,
isNumber(eˆ2) and isNumber(sqrt(25)) both return a 1 value, since both arguments corre-
spond to real numbers.

The function also returns a 0 value when its argument is a character string. For exam-
ple, isNumber(123) returns a 1 value, but isNumber(’123’) returns 0, since its argument is a
character string. Nonetheless, isNumber(_Num_(’123’)) returns 1 again, since the _Num_()
function converts the string of numbers to a numeric value.

13.2.3 HTMLIFrame space functions

These functions are related to HTMLIFrame embedded spaces, are proper to DescartesJS
and are used to pass information between a main scene (a container) and a scene opened
as a subordinate HTMLIFrame space in the container, when this scene is also a DescartesJS
scene. For more information on this type of space, see the HTMLIFrame space topic.

• <identifier>.set(‘vr’,var). This function requires the identifier of a space (main or
subordinate) before the .set suffix. Its arguments are a character string and a variable
(‘vr’ and var in the example). This function is used to send information to another
scene. The first argument is the name of a variable, in the receiving scene, whose
value is to be set by the scene sending the information. The second argument is the
variable, in the scene sending the information, whose value is to be transferred to
the receiving end. In this example, the receiving scene will have a vr variable and the
value of the var variable in the sending scene is to be assigned to it in the receiving
scene. The <identifier> is that of the scene receiving the information. There are
a few more things to point out regarding the identifier. However, passing on the
information using this function does not ensure the receiving scene is updated. This
is done with the <identifier>.update() function explained shortly.

• <identifier>.exec(‘fnc’,func). This function sends a call to a fnc() function that must
be already present in the Definitions tab of the receiving scene (it sends an instruc-
tion to execute such function). The first argument is a character string (‘fnc’ in the
example) matching the name of the function to execute on the receiving end. The
second argument (func in the example) is optional: it is the variable to be passed
along as an argument of the function on the receiving end. If the fnc function re-
quires a single argument, the function can be set as in the example). Otherwise,

13.2 DescartesJS intrinsic functions 147

instead of a single second argument, a character string (flanked by single quotes ‘’)
consisting in the various variables (separated by commas) to be passed as argument
is included as the <identifier>.exec(‘fnc’,func) function’s second argument.
For example, consider a fnc(arg1,arg2) function on the receiving end which uses two
arguments: arg1 and arg2. Then, the <identifier>.exec(`fnc',`a,b') call in
the scene sending the data would pass the values of the a and b variables in it as
arguments to be used on the fnc() function on the receiving scene, and execute that
function.
If the function does not require arguments, a blank character string is included as
second argument in the exec function. For example, <identifier>.exec(`fnc',`').

• <identifier>.update(). As already mentioned, this function forces the scene receiv-
ing the data (the one with the <identifier>) to update or refresh itself. It is usually
used after a variable value has been set, or a function has been remotely run, on the
receiving end. I. e., it is usually used after <identificador>.set or <identificador>.exec
functions. This update function requires no arguments.

When a subordinate scene (one included inside a main scene via an HTMLIFrame
space) is to send information to the main scene, this scene may sometimes not know the
identifier of the main scene. In these cases, a parent identifier suffices to indicate the in-
formation is to be transferred to the main scene. For example, parent.set(`vr',var).

When a parent scene is to pass information to a subordinate scene, the identifier is
the name of the subordinate scene’s HTMLIFrame space. This is the case here, since the
parent scene does know the name of its subordinate space. For example, if the container
scene has a subordinate scene via an HTMLIFrame space with a daughter identifier, the
daughter.set(`vr',var) function would pass the value of the var variable (present in
the container scene) on to the vr variable (present in the subordinate scene).

All the exercises in this user manual (those also included in the DescartesJSDocumen-
tation.zip file) use this functionality. The main scene, or container, is the index.html file
in each exercise’s folder (you may open it with DescartesJS to see how it works). It has two
subordinate scenes: <exercise name>_scene.html and <exercise name>_text.html. Both of
these files are opened in an HTMLIFrame space with a MAIN identifier. There is also code
related to exchange of information between spaces in the INICIO algorithm of the subor-
dinate scenes. For instance, they pass their name on to the container, so it can print it in
its top right corner.

Even though any exercise provided with this documentation uses this functionality,
we nonetheless include a particular exercise. Actually, this exercise is the only one that
is not displayed inside a container, as opposed to the rest. This is deliberately done so
as to keep the scenes as simple as possible. So, the exercise has just a pdf file with the
instructions and a couple of scenes: Dad.html and Sp2.html (the main container scene
and its subordinate one, respectively). There is no index.html file containing them both,
as opposed to the rest of the exercises. The instructions can be read using this link. The
following links can be used to access the main and subordinate scenes: Dad.html and

148 DescartesJS intrinsic functionality

Sp2.html. All these files are also included in the DescartesJSDocumentation.zip file, inside
their HTMLIFrame folder stored in the Exercises folder.

Let us review what we achieved by doing this exercise. A set function passed the value
of a variable from a space to another, allowing communication between a container (Dad.html)
and a contained scene (Sp2.html). The exec function remotely calls a function in another
space, allowing also the passing along of an argument’s value, should the function have
one. The update function remotely refreshes the space to which it refers to. Addition-
ally, a parent prefix in any of these functions indicates the target scene is the container
one. One single container may have several contained subordinate scenes. To specify to
which the information flows, the subordinate space’s HTMLIFrame identifier is used as a
prefix in the functions in the container scene. However, a contained scene can only have
one parent scene. Hence the use of the default parent prefix when referring to the parent.
As mentioned, the HTMLIFrame functionality is used in the index.html container in any
other exercise, and its subordinate scenes. The reader may open these in DescartesJS and
review how they work to even better understand this.

Besides the functions used to communicate information between spaces, there is a
particular function whose purpose is to reload different html content in a same HTM-
LIFrame space.

• <identifier>.changeConf(path). This function reloads solely the html code of a sub-
ordinate scene. It is typically used when a same HTMLIFrame space is to handle
several HTML contents. When this function is used, the DescartesJS interpreter is
not loaded. This situation is desirable in situations where quick transitions between
different html scenes are required. The content is loaded from an html file. The
argument of the function is a character string with the path of the html file to be
loaded, relative to the container’s path.
Imagine a main scene Dad.html has two subordinate scenes: A.html and B.html.
Both are stored in the same folder as the Dad one. Dad.html has an HTMLIFrame
space, with a subscene identifier, and with A.html entered in its file parameter in the
space. This way, the default opened subordinate scene is A.html. If the contained
scene is to be changed then to B.html, the subscene.changeConf(`B.html') func-
tion would have to be called (remember the B.html file is saved in the same folder
as its containing scene). When the function is called, the HTMLIFrame space is
reloaded using the <ajs>...</ajs> block code from the B.html file (the block related
to the DescartesJS code).

The changeConf function actively switches the content of an HTMLIFrame space using
different scenes. This also means it is not indispensable to have one HTMLIFrame space
for each scene to be used.

13.2 DescartesJS intrinsic functions 149

13.2.4 Audio and video control functions

Some of DescartesJS intrinsic functions are associated to audio a video controls. These
functions have the control’s identifier, followed by a period (.), as a prefix. For example,
<control identifier>.play() is one used to control the file’s playback. The functions are:

• <control id>.play(): When this function is called, the audio or video file related
via the control id is reproduced from the beginning. For example, a2.play() would
be the function for a control with an a2 identifier.

• <control id>.stop(): This one stops the playback of the audio or video file related
to the control. For an a2 control, this function would be a2.stop().

• <control id>.pause(): When this function is called, the related audio or video file
is paused. If it is eventually played back, it will start at the time where it was
paused. For an a2 control, this function would be a2.pause().

• <control id>.currentTime(t): This one does have an argument. It is a number (t
in the example) which is interpreted as the time (in seconds) where the playhead
is to be placed in the related audio or video file. If the file is subsequently played, it
will start at that time. For an a2 control, a2.currentTime(5) will place the playhead
of the audio or video file of the a2 control at 5 seconds after the beginning. An
a2.play() function called afterwards will play the file back starting at 5 seconds
from the beginning.
Note that, though similar, this is a function and not related to the variable used to
print the playhead’s time: <control id>.currentTime, which has neither function
parentheses nor arguments. For more information on this variable, review the
audio and video control variables topic.

This functionality can be reviewed in the audio control’s related exercise.

13.2.5 Menu numeric control related functions

There is a single function associated to this type of numeric control.

• <menu control id>.setOptions(str): This function allows the programmer to enter
the options displayed by the related menu via a character string (the str argument in
the example). When defined only via the configuration editor, these controls have
their options parameter where the menu’s options are entered separated by com-
mas. However, it is sometimes necessary to set their options via something a user
might enter, such as a character string.
Consider the following example. The user fills some text-only text field type controls:
t1 and t2, and then wants a menu to display what was filled as the options of an m1
menu. Then, both text field controls actions could be to calculate. And the parame-
ter of calculation would be:

150 DescartesJS intrinsic functionality

str=t1+','+t2

m1.setOptions(str)

Note that the first assignment creates a character string which is the concatenation
of the text value of t1 with a comma, then concatenated with the text value of t2. This
is then assigned to the str variable. The format emulates the way the options would
be entered in the options parameter of the menu, if it were entered via the Controls
tab of the configuration editor. The second line starts with the menu’s m1 identifier,
followed by .setOptions(str) the string containing the options is the argument of the
function. When this function is executed, the m1 menu’s options change automat-
ically to whatever the user entered in t1 and t2. This function is particularly useful
since it allows for a more dynamic behavior of the menu numeric control.

13.2.6 Matrix and array information transfer through text variables

We check first the functions involved in transferring information between matrices and
text variables. Later on, and since the information here included is complicated, an exam-
ple is included so as to clear doubts.

• _MatrixToStr_(‘<matrix id>’). It stands for matrix to string. Its argument is a char-
acter string in which the identifier of the matrix is entered (<matrix id> in the exam-
ple).

The function returns, in the form of a character string, the contents of the ma-
trix.

The returned text uses label format. The first line consists of the identifier of the
matrix flanked by the usual <> brackets. For example, <M> would be the first line
for an M matrix. Later, in another line, the values of the entries (or columns) of the
first row are listed, each separated by the following symbol ¦. Each line represents
one row of the matrix. After the last line, the closing label with the identifier of the
matrix is present (</M> for a matrix with an M identifier).

We see now a brief example. Consider the following instruction: mstr=_MatrixToStr_(`M').
This will dump the contents of the matrix in an mstr variable. If M is a 2×2 matrix,
and its entry values are M[0,0]=1, M[0,1]=2, M[1,0]=3, and M[1,1]=4, mstr would end
up having:

<M>

1 ¦ 2

3 ¦ 4

</M>

• _StrToMatrix_(mstr,’<matrix id>’). It stands for string to matrix. Its first argument is
the variable holding the character string where the contents of the matrix are stored.

13.2 DescartesJS intrinsic functions 151

The second argument is the identifier of the matrix into which the contents are to
be passed. The function, therefore, involves two character string type arguments. If
the second (the identifier) is to be entered explicitly, it must therefore be flanked by
single quotes (‘’).

This function does the opposite of what _MatrixToStr_() does. It does not return
a value as such, it only internally passes information stored as a character string into
a DescartesJS matrix.

As a brief example, suppose the information is stored in a mstr variable as a char-
acter string. We wish to pass the data into a matrix with an M3 identifier. Suppose
the information inside the variable is the following character string:

<M>

1 ¦ 2
3 ¦ 4
</M>

<M3>

4 ¦ 3
2 ¦ 1
</M3>

Note that mstr has information pertaining to an M matrix, and information per-
taining to the M3 matrix. If the _StrToMatrix_(mstr,`M3') function is called,
DescartesJS searches the character string with all this information, but it only ex-
tracts the data related to the M3 matrix (the second argument in the function spec-
ifies this). And it dumps that data in the M3 matrix. The M3 matrix ends up having
the following entry values: M3[0,0]=4, M3[0,1]=3, M3[1,0]=2, and M3[1,1]=1.

The M3 may be previously declared or not in the Definitions tab. If already
declared, the data is dumped on it, and any previous entry values are overwritten.
Otherwise, the matrix is internally declared and the information dumped in it. The
matrix rows and columns variables (<matrix id>.filas and <matrix id>.columnas, re-
spectively) adjust their information, taking precedence over any value that may have
previously been assigned to the number of rows and columns via the definition of
the matrix in the Definitions tab of the configuration editor.

We now do a full exercise to better understand these two functions.

This exercise’s interactive scene, along with the instructions to build it, can be found
at Matrix String. The interactive scene’s file as such can be found at this link. All these files
are also stored in the DescartesJSDocumentation.zip file.

Let us summarize what we achieved by doing this exercise. First, the content of an
M matrix is dumped, in the form of a character string, in an mstr variable. Afterwards,
the entries of the M matrix are all set to zero. Then, the matrix is given its initial values

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Matrix_String/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Matrix_String/Matrix_String_scene.html

152 DescartesJS intrinsic functionality

again by passing them on from the mstr variable in which they were stored. It is important
to remember that, for the _StrToMatrix_ function to work correctly, the name of matrix
(its second argument) has to match the identifier of the matrix to which the data will be
passed on. As already mentioned, the mstr variable can potentially have more data be-
sides the values of the entries of M. However, the function will only search those inside
the <M></M>, since its second argument is `M'. Finally, the last step shows it is possible to
dump values stored in a character string on to a matrix, even if it has not been previously
defined (the mstr2 variable holds the character string, and the M2 previously undefined
matrix is created on the fly.

Array information can also be stored and retrieved, similar to how it is done with ma-
trices.

• _VectorToStr_(‘<array id>’). Its name stems from the fact that arrays are called vec-
tores in Spanish. So, the name stands for array to string. This function has a single
argument: the array’s identifier flanked by single quotes (‘’), since it is in the form of
a character string.

The function returns a character string corresponding to the array’s contents,
and is therefore usually assigned to a variable. As an example consider an arr vari-
able where the V array’s contents are to be stored. Then, arr=_VectorToStr_(`V')
achieves just that.

The format of the stored information is similar to the one used in matrices. The
label appears in the first line, and is the array’s identifier flanked by brackets. For
example, <V> for an array with a V identifier. Then, in a second line, the first entry
of the array. And so on, each entry appearing in a different line. Once all entries are
accounted for, the label closes (</V> in the example).

• _StrToVector_(arr,’<array id>’). Again, its name stems from the fact that arrays are
called vectores in Spanish. So, the name stands for string to array.

As with matrices, this function passes the values stores in a character string into
an array. For instance, _StrToVector_(arr,'V')will pass the contents of the char-
acter string (the first argument: the arr variable) on to the entries of an array with a V
identifier. The format of the character string information is the same one mentioned
previously.

As is the case with matrices, the data in the character string may contain sur-
plus information. The function will only pass on the information pertaining to the
array indicated via the function’s second argument. Note that both arguments of the
function are in the form of character strings.

If the array into which the information is passed on has not yet been defined
in the Definitions tab of the configuration editor, it will be created on the fly, just
as what happens with matrices. If it had been previously defined, its data will be
overwritten and its number of entries redefined according to the data it receives.

13.3 Boolean Operators and conditionals 153

The character string format of information from an array is very similar to its matrix’s
counterpart. The only difference is that each line corresponds to an entry of the vector,
while for matrices, each line is made up of diverse data (the rows), each separated by the ¦
symbol.

So far, the manipulation of the data from matrices and arrays, and which is stored as
character strings, is done inside the scene only. It is sometimes necessary to save this data
in a file external to the scene, to later be retrieved. This is handled in the external data
saving and retrieving topic.

13.3 Boolean Operators and conditionals

Boolean operators are used to compare values of DescartesJS elements. They return either
a 1 or 0 value, depending on the comparison’s result. The elements involved in a compar-
ison can be constants, variables, and even the values returned by functions.

If the result of a comparison is true, a 1 value is returned, and 0 otherwise. We now list
the boolean operators available in DescartesJS.

13.3.1 Boolean operators and their use in conditions

The folowing list contains the operators available in DescartesJS, as well as examples of
how they are used to compare values.

• == (identical to): This operator consists of two equal signs, the second immediately
after the first (==). It compares the element before the operator with that after it.
If they are identical, a true verdict is given and a 1 value returned. If they are not
identical, a false verdict is given and a 0 value returned. For example, 2==2 returns a
1 value since the condition is true, whereas 2==1 returns a 0 value since the condition
is false.
DescartesJS is flexible, and allows the comparison to be made if only one equal sign
is used (=). However, since this symbol is associated with the assignment of values
to variables, it should not be used to make comparisons.

• != (different from): This operator (an exclamation sign followed by an equal sign)
compares the element before with the one after the operator. If the values are differ-
ent, a 1 value is returned. If they are not different, a 0 value is returned. For example,
2!=2 returns a 0 value, while 2!=1 returns a 1 value.

• < (less than): This operator compares the element before it with the one after and,
if the former is numerically lower than the latter, a 1 value is returned (and 0 other-
wise). For example, 2<1 returns a 0 value since the condition is false, whereas 1<2
returns a 1 value since the condition is true.

154 DescartesJS intrinsic functionality

• > (greater than): This operator compares the element before it with the one after
and, if the former is numerically greater than the latter, a 1 value is returned (and 0
otherwise). For example, 2>1 returns a 1 value since the condition is true, whereas
1>2 returns a 0 value since the condition is false.

• <= (less than or equal to): This operator compares the element before it with the one
after it. If the former is lower than or equal to the latter, a 1 value is returned (and 0
otherwise). For example, 2<=2 returns a 1 value since the condition is true, whereas
3<=2 returns a 0 value, given that this condition is false.

• >=: (greater than or equal to): This operator compares the element before it with the
one after it. If the former is greater than or equal to the latter, a 1 value is returned
(and 0 otherwise). For example, 3>=3 returns a 1 value since the condition is true,
whereas 3>=4 returns a 0 value, given that this condition is false.

• ! (not operator): This operator, which consists of a single exclamation mark, negates
whatever condition comes after it. If the condition that follows is true, a 0 value is
returned. And if it is false, a 1 value is returned. Negation basically turns a 1 value
into 0 and vice versa. For example, !(3>4) returns a 1 (true) value, whereas !(3<4)
returns a 0 (false) value. An even more direct example is !1, which returns a 0 value;
or !0, which returns a 1 value.

• | (or operator): This operator, sometimes called pipe, consists of a vertical bar that
is usually entered by typing the key left of the 1 key in the alphanumeric keyboard.
It separates two conditions, or boolean values; and if either of them is true (or has
a 1 value), the whole expression returns a 1 value. For example, (2>3)|(3>1) returns
a 1 (true) value since 3 is effectively greater than one. So, the first condition is false,
but the second is true. False or true returns a true (a 1 value). However, (2>3)|(3>4)
returns a 0 since neither condition is true.

• & (and operator): This operator, also known as and, consists of an ampersand sym-
bol. It separates two conditions, or boolean values; and if either of them is false (or
has a 0 value), the whole expression returns a 0 value. For example, (2>3)&(3>1) re-
turns a 0 (false) value since the left hand side condition is false. A similar example,
(2>3)&1, also returns a 0 (false) value since, again, the left hand side condition is
false. However, (2<3)&(3<4) returns 1, since neither condition is false.

Conditions are frequently used to assign certain values to variables. Say, for instance,
that an a variable is to be assigned a 10 value if the value of a u variable is greater or equal
to 50; and a 20.5 value otherwise. The following assignment would have just that function:
a=(u>=50)?10:20.5

Note that this code starts as a typical value assignment to an a variable. However, after
the = symbol, a condition is entered between parentheses: (u>=50). This condition is only
true if the value u holds is 50 or higher. A DescartesJS condition in an assignment forcefully

13.3 Boolean Operators and conditionals 155

has a question mark (?) after it. Immediately after it comes the value to be assigned to the
variable should the condition be true (or have a 1 value). A colon symbol (:) follows this
value, and immediately after it comes the value to be assigned to the variable should the
condition be false (or have a 0 value). Consider the following example:
a=((c<2)|(d>1))?j:sqrt(k)

To better understand this example, let us give the c and d variables some test values. We
start with 1 and 0, respectively. c<2 returns a 1 value (since the condition is true), but d>1
returns a 0 value (since the condition is false). Afterwards, these couple of boolean values
(1 and 0) are operated via an or operator. So, the whole condition boils down to 1|0. The or
operator returns a 1 (true) value is either argument is true (or 1). So, the whole condition
in the example returns a 1 value, and the value right after the question mark is assigned to
the a variable. The a variable ends up having the value of a j variable. Nonetheless, if the
c and d variables were to have 3 and 0 values, respectively, then a would be assigned the
square root of the value of the k variable, since the whole condition returns a 0 value in
that case (checking this result is left as a challenge for the reader).

Let us do an exercise to even better understand these concepts. This exercise’s in-
teractive scene, along with the instructions to build it, can be found at Conditions. The
interactive scene’s file as such can be found at this link. All these files are also stored in the
DescartesJSDocumentation.zip file.

The text displayed in this exercise allows us to evidence the behavior of unitary con-
ditions (where one value is compared with another). The showred variable value is the
result of a slightly more complicated condition (one built from two unitary conditions).
Finally, a useful application of using conditionals was presented: the ability to show or
hide a graphic element depending on the value of a certain variable. This can be extended
to determine whether controls are displayed or active as well.

The use of a single variable in a conditional parameter such as the draw if one in
graphic objects is also a noteworthy behavior in this exercise. The showyellow and showred
variables, since they adopt the value returned from a conditional, are already binary. Though
the condition in the draw if parameter could be showyellow==1 and showred==1, they can
be further simplified to showyellow and showred. When the variables used for such deci-
sions have more than 2 values, they are no longer binary and cannot be used alone. For
example, suppose an a variable controls which feedback text is displayed when a student
answers a question. 0 is assigned to it when no feedback is to be displayed, 1 when the
answer is correct, and 2 when the answer is incorrect. a then has 3 possible values. In this
case, an explicit comparison between a and the possible values has to be implemented.

Remember the & and | operators allow the combination of unitary conditions. When
these operators are used, the correct use of parentheses as grouping elements is very im-
portant for the scene to behave as required.

Colors were applied to some objects in this exercise. Feel free to review the color editor
topic for more information on this functionality.

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Conditions/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Conditions/Conditions_scene.html

156 DescartesJS intrinsic functionality

13.3.2 Using mute variables to condition the execution of functions

Sometimes, a decision has to be made whether to execute one particular function, or an-
other. Since functions return values to a certain variable, this decision can be made using
a condition. Consider the following instruction:

blah=(z>3)?GenerateData():blah

Here, if the z variable is greater than 3, a GenerateData() function is called, and its
return value assigned to a blah variable. If z ≤ 3, the blah variable is assigned its own
value, thus doing absolutely nothing new. blah is an example of a mute variable.

The function may very well not return anything at all. I. e., it may be just an algorith-
mic function that returns no particular value. However, using blah as a mute or dummy
variable allows the code to be a bit clearer.

DescartesJS actually does not require functions to explicitly return their values to a vari-
able. The previous instruction may actually be simply:

(z>3)?GenerateData():0

In this example, the function is executed when z > 3. If it returns a value, that value
will be dumped in a DescartesJS internal dummy variable and be ignored. Otherwise, a 0
value will be dumped in a DescartesJS variable and be ignored. So, it is not necessary to use
dummy variables to conditionally execute functions. However, some developers prefer to
do it since it makes the code clearer.

13.4 Generic operators

Generic operators are math symbols commonly used to assign values, add, subtract, mul-
tiply, divide, and group, among others with more specific functions. Some of them also
have alternate functions, such as the concatenation of character strings.

Operators work on constants, variables, elements returned by functions, and texts.

• =: This operator is used to assign values. When used, the value of the constant, vari-
able, or expression at the right of the symbol is taken and assigned to the variable at
its left. Numeric values and character strings can be assigned to a variable. For ex-
ample, a=2 takes the value 2 at the right and assigns it to the a variable. b=2*3 takes
the value of the expression at the right, which is 6, and assigns it to the b variable.
c=`hi' takes the character string at the right and assigns it to the c variable. If this
last variable is printed, hi is the printed text.
There is an important difference between the single equal operator (this one used for
assignments) and the double equal operator (==). The latter is used to compare val-
ues of expressions, and is discussed in the boolean conditions and operators topic.

13.4 Generic operators 157

• +: This operator is used to add the values of variables and/or constants. It is also
used to concatenate character strings. For example, a=2+3 assigns the a variable
the value of 5. But, b=`I'+`salute'+`you' assigns the b variable the I salute you
character string.
“Adding” a numeric value with a character string first changes the numeric value into
a character string, and then concatenates them. For example, c=2+`3' assigns the c
variable the 23 character string.

• *: This operator multiplies the values of the expressions at its sides. For example,
a=2*pi assigns the a variable the value of 6.283...

• /: This operator divides the value at its left side by that at its right, and returns the
value. For example, say an a variable has a 3 value and a b one has a 1.5 value. c=a/b
assigns a 2 value to the c variable.

• ∧: This power operator takes the element at its left and elevates it to a power that
corresponds to the value of the element at its right. For example, q=2�3 assigns a
value of 8 (2 times 2 times 2) to the q variable.
This operator can be used to extract roots different than the square root. For exam-
ple, r=3�(1/3) extracts the cubic root of 3 and assigns this value to the r variable.

There is an important behavior regarding the power operator when it is used to
graph power functions. Say y1=x�0.6 and y2=x�(3/5). These two functions are
mathematically equivalent. They are both x3/5. However, if both equations are plot-
ted via an equation graphic object, only the part of the graph with the x>0 domain is
plotted. This happens because y = xp functions are only defined for positive values
of x when p is not an integer. 0.6 and (3/5) are taken as real non integer values and
the function for negative values of x is not plotted.

So, when a y = x
p
q function is plotted, with q a positive odd number, to explicitly

indicate the q denominator is to be taken as the q-th root, y3=(x∧3)∧(1/5) would
have to be entered (according to our example). This function is therefore defined for
x within the real numbers.

To summarize, in order to indicate that a function is the q-th root, it is necessary
to enter it as wed g e(1/q) (the argument elevated to 1 over the number correspond-
ing to the root to be extracted). The function’s domain is then taken to be all real
numbers.

• %: This modulo operator takes the value at its left side and divides it by the value
at its right side. It returns the remainder after such a division. For example, 8%3
returns a 2 value, since 7=3*2+2. Another example, 3.8%1.2 returns a 0.2 value,
since 3.8=3*1.2+0.2.

• (): Parentheses, as operators, are used to group expressions in assignments and/or
conditions, so as to specify the order in which other operators such as product or

158 DescartesJS intrinsic functionality

sum are implemented. DescartesJS follows the typical precedence of operations com-
mon to all programming languages. Parentheses can be used to ignore these and
specify a different order. The math operations order and hierarchy topic can be re-
viewed for more information on this functionality.

DescartesJS may display certain error messages when the programmer makes mistakes
in assignments or operations:

• Infinity: This error appears typically when a division by zero is attempted. If a value
is to be printed and a division by zero is involved in its calculation, the Infinity text
is printed in its stead.

• NaN : This error appears when DescartesJS attempts to print a value whose calcula-
tion involves an invalid operation. An example is the square root of a negative argu-
ment, or the operation of character strings with numbers using operators different
from +. The + operator is valid in this case since it is used to concatenate.

• Console errors: These errors appear explicitly in the DescartesJS console. It is there-
fore recommended to have it open while developing a complicated scene prone to
human error. The errors here reported are usually explicit as to their nature. For ex-
ample, “faltan paréntesis por cerrar” (Spanish for closing parenthesis missing) when
the number of opening parentheses and closing ones does not match. The location
where the error is detected may not be explicit. So, besides having the console open,
it is also a good practice to constantly keep an eye on it so as to be able to pinpoint
the error to a new part of code recently added.
The errors reported in the console are not necessarily recent. So, another suggestion
is to close and open the console so as to clear its contents. If an error is displayed in
a console that was recently cleared, it means the error is still present in the code.

13.5 Math operations order and hierarchy

Just as with any other programming language, or even any calculator, DescartesJS follows a
predetermined order or hierarchy of operations when several operations are implemented
in a single instruction. The power are first dealt with, then multiplications and division,
and finally additions and subtractions. And the order for operations in the same hierar-
chy is from left to right (the leftmost operation is handled first, and so on). Consider the
following assignment:

a=3+2*3+4/5�2

First, the powers are implemented, so the expression is reduced to

a=3+2*3+4/25

Then, the products and divisions are done, from left to right, leaving

a=3+6+4/25, and then a=3+6+0.16

13.5 Math operations order and hierarchy 159

Afterwards, the additions and subtractions are done, also left to right, leaving first

a=9+0.16, and then a=9.16

It is frequently necessary to specify a different order of operations to DescartesJS. This
is done using parentheses as grouping operators. For example, consider an expression to

extract the 5 root of 32 (5
p

2). This is achieved using 32
1
5 . A common error in this example

would be to use the following expression:

32�1/5, instead of 32�(1/5)

The former expression first performs the power, thus obtaining

32/5, which finally leads to 6.4

It is therefore necessary in this example to use the parentheses to indicate the order of
operations. By using

32�(1/5)

DescartesJS first attends to the contents inside the parentheses. This group returns a
0.2 value, and the 32 is then powered to the 0.2 exponent, finally returning the expected 2
value result.

Parentheses thus alter the order of operations. When parentheses are found, their con-
tents are parsed first, and their returned value is then considered in the outer expression.

Parentheses can be nested inside other parentheses. In these cases, the innermost
ones are dealt with first, and so on until the outermost layer is reached. Consider the
following expression

2*(1+3/(2+1))

DescartesJS first encounters the outermost parenthesis. It then searches its contents to
see if there are other parentheses inside it, and finds one. Searching its contents for more
parentheses inside, it finds no more and evaluates the expression in this inner parenthesis,
simplifying the expression to

2*(1+3/3)

DescartesJS continues by evaluating the contents if the remaining parenthesis. In it, it
solves first products and divisions left to right, obtaining

2*(1+1)

It then does the additions and subtractions in the parenthesis

2*2,

From which the final 4 value is obtained.

Parentheses allow for a more flexible behavior y enabling the user to dictate the order
of operations. This, however, is commonly related to human error. An opening paren-
thesis may be missing its closing one, or vice versa. This type of error happens more fre-
quently when using lengthy expressions. One way to avoid this is to immediately close

160 DescartesJS intrinsic functionality

the parenthesis after inserting an opening one. Once done, the inner contents of that set
are entered between them. Yet another way to avoid this is to use modular expressions. A
lengthy expression may be replaced by more modular assignments. This has the downside
of requiring more variables, but allows for an easier expression. The errors mentioned are
discussed more in depth in the DescartesJS console topic already described, as shown in
Figure 13.5.0.1.

Note that the error in this figure results from a text graphic attempting to print the
value of (3+2*(1/3), in which a closing parenthesis is missing. If the missing parenthesis
were replaced, the expression would be (3+2*(1/3)), returning a 3.6666... value, which
is what is finally printed at the top left corner of the scene in the figure. DescartesJS can
sometimes “sense” what the developer meant to enter, but only to some extent. This type
of error messages are only displayed in the console. That is why we recommend keeping
it open and at the front, particularly when dealing with a complicated piece of code.

Figure 13.5.0.1: Console error message when attempting to evaluate an expression with a
mismatch of opening and closing parentheses.

13.6 Update order when handling a scene

When DescartesJS loads a scene, and when a user interacts with it, a certain order of up-
dates and instructions is carried out. The user needs not remember all this most of the
time. However, certain weird behaviors in a scene may be explained by this functionality.

For example, consider a DescartesJS scene containing a spinner with a n1 identifier.
What happens when the scene is loaded if the spinner is given an initial 3 value, but there
is a n1=7 assignment in the INICIO algorithm? And what happens if, say, we include an
event that assigns n1 another value? What value will it end up having when the scene

13.6 Update order when handling a scene 161

finishes loading? How will it change following a user’s interaction with the scene? How
will it change if an animation is run?

These questions can be answered if the DescartesJS predetermined order of executions
is understood.

13.6.1 Updates upon loading a scene

When a scene is loaded and launched, the following executions take place and in the fol-
lowing order:

1. Objects’ construction. In this first moment, all the objects conforming a scene are
built with the default values.

2. Beginning phase. Once the objects are present, this second moment consists of the
following updates in this order:

(a) Definitions present in that tab (arrays, matrices, etc.).
(b) Algorithms in the Programs tab.
(c) Controls defined in the tab with the same name.
(d) Spaces. This update includes the calculation of variables related to spaces and

the update of graphic objects housed in them.

3. An update phase for all values. This phase is included so as to ensure all objects are
using their updated values instead of their predefined (default) ones, and is rather
important so events can work properly.

Each element in this list can involve several executions. For example, there may be
executions implemented in the arrays and matrices defined in the Definitions tab. These
are performed in the order in which they appear in the list. This applies also for the other
tabs involved.

All this defines how a scene is shown upon loading, following the clicking of the Apply
or Ok button in the configuration editor. However, certain actions also take place when a
user interacts with a scene, or it suffers changes from an animation, for instance.

13.6.2 Subsequent updates

Any subsequent interaction from a user, or any animation step (if there is an animation),
triggers an update cycle with the following actions in the order in which they are listed.

1. Auxiliary elements update. The auxiliary elements in the Definitions are first up-
dated.

2. Controls update. An initial update of all controls.
3. Events update. An update of any events found in the Programs tab.
4. Controls update. A second update of all controls. Its purpose is to ensure they hold

their updated values.

162 DescartesJS intrinsic functionality

5. Spaces update. All element related to spaces are updated.

The second control update is included to respond to situations where a control (say b)
at the end of a controls’ list may result in modifying one before it (say a) in the list. In this
type of situations, a will not end with its updated value if the second controls update is not
performed.

Say, a is a control with its starting value set to 0 and its minimum value (via its min
parameter) is set to b. b’s value was recently changed to 1. A first sweep of the controls will
leave a with its 0 starting value. However, when reaching b, its 1 value is implemented. The
second sweep will ensure a ignores its 0 value and used b’s one instead, since a’s minimum
value is b, and b’s starting value is greater than a’s one.

As mentioned before, the developer is not required to know this functionality. It is
seldom necessary. However, knowing the order can help make clear certain behaviors in a
scene, such as why a variable adopts one value or a different one depending on where the
assignment occurs. It can also help ensure the correct assignment of values to controls.

14

14
Data saving and retrieving

This chapter deals with the saving and retrieving of data generated by a DescartesJS scene.
This type of data handling is used via matrices, so this chapter also involves a considerable
amount of matrices’ functionality.

It is occasionally necessary to store large amounts of matrices data in a character string.
When this is done, DescartesJS separated the entries’ values with special symbols so that
they can be easily read afterwards. Eventually, this data is typically assigned to a variable.
And then the data can be saved in a text file. This file can later be used to retrieve the data
back into a matrix.

To understand this functionality’s usefulness, consider the following case. The results
of a simulation done in DescartesJS are to be used in a scene. These results are lengthy, and
they are stored in a very big matrix. However, the simulation is complicated and takes a lot
of time. Since only the results are important, it is not desirable that DescartesJS performs
the simulation every time the scene is launched. A user would grow tired of waiting, say, 5
minutes for the results every time the scene is loaded. The results of the simulation could
alternatively be saved to an external text file, and DescartesJS would only need to retrieve
this data when the scene loads, instead of running the whole simulation again. By doing
this, the developer would only run the simulation once, save the data, and then configure
the scene to load such data when launching.

14.1 Saving and retrieving information in files

DescartesJS can save data into files via character strings. It is also possible to load the data
from the file into a character string, to then be stored in a variable.

• _Save_(). Used to save a content to file.

This function has, as a first argument, a character string with the path and name
of the text file in which the information is to be saved. If the file has an extension,
it is also included. The second argument is the content to be saved. For example, if
Save(`MyFile.txt','my data') is executed, will launch a DescartesJS save di-
alog. It will already have MyFile.txt suggestion included by default, which the user
may modify. If the file is saved, it saves the second argument’s character string (the
my data text in the example). The second argument is usually a variable which con-
tains the character string to be saved, since it is typically used to store large amounts
of data, and not a single phrase.

163

164 Data saving and retrieving

In order for this function to work properly, the scene’s html file has to be al-
ready saved in some folder of choice. This is necessary since the path to the save
file needs to have a reference. An example of the best way to call the function is
Save(`./MyFile.txt',data1) (the first period included indicates to start in the
folder where the scene’s file is saved). It is not absolutely necessary to include the
path. The file’s name suffices if the scene has accessed that path previously. How-
ever, we recommend always including the path.

• _Open_(). This function opens a file selected by the scene’s user. It cannot be used to
open files pre-selected inside the scene. It merely launches a dialog with which the
user selects the loacl text file to open, and dumps its name, as well as its contents,
into a couple of variables.

Its single argument is a character string that corresponds to the name of the
function (without its arguments parentheses) in which a couple of variables with
fixed names can be used to pass the name of the file and its contents into the devel-
oper’s own variables.

As an example, consider a scene with a button control whose action is set to
calculate, and its calculation parameter is _Open_(`getData'). For this to work,
the scene has to have a getData() function in its Definitions tab. In this function, two
assignments should be present:
fName=DJS.fileName

fContent=DJS.fileContent

In this example, an fName variable is assigned the name of the file (DJS.fileName
is a fixed variable which holds the name of the file); and fContent is assigned the
contents of the file (DJS.fileContent is also fixed).

• _Load_(). This function opens a file from a drive. The function returns the contents
read from the file, and it is therefore typically assigned to a variable.

Its single argument is a character string with the path and file name to read.

For example, if dt=_Load_(`MyFile.txt'), the MyFile.txt file’s contents are
dumped into a dt variable, which ends up holding such data as a character string.
Since paths are also allowed, another example is dt=_Load_(`./data/MyFile.txt'),
which would read the data of a MyFile.txt file stored in a data folder present in the
folder where the scene’s file is located, and then dump its contents in the dt variable.

It is very important to remember that, due to browsers’ security preferences,
this function only works in scenes used in the DescartesJS editor, and not in scenes
opened in browsers.

The main differences between the _Open_() and _Load_() functions is that, on
the one hand, _Load_() allows the scene to access files with their names indicated
inside the scene (the instruction insice the scene specifies which file to read and it
is not necessary to select it via a dialog). On the other hand, _Load_() only works if
the scene is opened in the DescartesJS editor, and not when it is opened in a browser.

14.2 Data saving and retrieving within a scene 165

Thanks to this last reason, _Load_() is commonly used only to prepare data in a scene
that will eventually hold such data inside its own code; or in scenes intended to be
used solely in the DescartesJS editor.

All this may seem confusing, and an exercise might be the best way to clear doubts.
This exercise’s interactive scene, along with the instructions to build it, can be found at
Open Load Save. The interactive scene’s file as such can be found at this link. All these
files are also stored in the DescartesJSDocumentation.zip file.

This exercise uses a text file previously generated in a UTF-8 without BOM code sup-
porting text editor such as Notepad++. This coding is used so that no special characters
that may prevent DescartesJS from correctly reading the file are present. The data is read
using the _Open_() function, and then stored in another file (File2.txt) using the _Save_()
function. They are finally read also using the _Load_() function.

Again, due to security preferences common to all browsers, DescartesJS cannot read a
particular file using the _Open_() function if the file has not previously been selected by
the user. It is therefore not possible for the scene to open the file directly. So, if the scene
is opened in a browser, the _Open_() function is used as a means for the user to select
which file to open via a dialog, and once selected, the file can be opened. Alternatively,
the _Load_() function can be used for such a purpose, but its disadvantage is that it is only
guaranteed to work properly in the DescartesJS editor, and not necessarily in a browser.
Finally, the content of the File.txt file is the data of a matrix, though it is never assigned to
one. Remember the _StrToMatrix_() and/or _StrToVector_() functions can be used to pass
data from a character string to a matrix and an array, respectively.

14.2 Data saving and retrieving within a scene

It is frequently preferable to save data within the scene’s html file. This guarantees there
will be no problems reading the data due to access permissions.

For example, suppose there is data in a matrix that takes long to generate via a sim-
ulation due to the complexity of the calculations. The scene may freeze, or the browser
starts to display dialogs indicating the user that the scene is taking too long to respond.
All these are undesirable behaviors in a scene, since the user may become confused. The
data stored in the matrix can be saved in a text file using the functionality described in
the Matrix and array information transfer through text variables topic. Additionally, and
in order to ensure the data will be retrieved, it may be desirable to embed this content as
a part of the html code of the scene inside a script label block. A DescartesJS scene has no
trouble reading data from its same html file.

The script block in question has an opening label: <script id=�path and name of

the file � type=�descartes/archivo�>, and a closing </script> one. archivo stands

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Open_Load_Save/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Open_Load_Save/Open_Load_Save_scene.html

166 Data saving and retrieving

for file in Spanish. For example, <script id=�./dat.txt� type=�descartes/archivo�>

indicates a dat.txt file is the one read. Its contents appear between the opening and clos-
ing script labels. This data file can be generated first, and then its data is copied into the
script block inside the html code of the scene. Again, this ensures no problem will arise
when attempting to read this file, since it is contained in the scene itself. The suggested
location of the script block inside the html code is immediately after the closing label of
the div block that contains the DescartesJS scene code.

There are a few pointers regarding the embedding of data as script blocks. Even though
it is not indispensable, we suggest using the ./, and not only the file’s name, inside the
opening script label. This further ensures that the file is correctly found.

We do now an exercise to better understand this functionality. This exercise’s interac-
tive scene, along with the instructions to build it, can be found at Save Script. The inter-
active scene’s file as such can be found at this link. All these files are also stored in the
DescartesJSDocumentation.zip file.

It is worth remembering that the _Load_() function does not allow loading files foreign
to the scene locally. Notice, however, that the Data.txt file is embedded inside this same
scene via a script block. So, the _Load_() function can be freely used.

Note as well that the scene was first built in DescartesJS and then its code edited in a
text editor. However, it was necessary to close DescartesJS prior to the text edition. This
was done so that edition done in one does not alter the changes made in the other. Though
this rarely happens, it is good practice to edit with one tool at a time.

The last step in the instructions of this exercise involves opening the scene in a browser
and clicking the Load button. This is done so as to verify that the scene will successfully
read the data in the script block when opened in a browser.

This exercise handles the data from a 2×2 matrix. It is a very simplistic example. How-
ever, consider the advantages when handling very large matrices, where a long time may
be involved when calculating the values for each entry. On one hand, this saving the script
strategy allows the data generated from a simulation to be stored inside the scene’s html
file, so the simulation will have to be run only once. On the other hand, the script block in
the html file ensures the data is readily available, whether the scene is viewed locally in a
browser, or is opened from a server. One must, however, anticipate larger scene files if the
script block is lengthy.

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Script_Save/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/Script_Save/Script_Save_scene.html

15

15
General tools

Some tools in DescartesJS do not belong to a particular tab. They are distributed among
several tabs and their functionality is not restricted to a certain control, or graphic, etc.
This chapter is dedicated to such tools.

15.1 Color editor

This tool allows for colors, color gradients, and image patterns to be used in graphic ob-
jects as well as backgrounds for control and space elements. It consists of a window
launched when the color button of a DescartesJS element is clicked. Examples of such
elements are: graphic objects, the axes of a cartesian plane, texts, a space’s border, and
many more. This window includes three different tabs.

The color editor dialog consists of three tabs, all of which have four common buttons: a
Copy one, by which the user copies a color definition (single, gradient or pattern) to an in-
ner clipboard; paste, by which the user pastes a color definition that was previously copied
(thus avoiding entering the definition by hand), Accept to implement the color definition,
and Cancel to exit the dialog without implementing the definition.

15.1.1 RGB

This tab of the color editor allows the user to enter a single color. Figure 15.1.1.1 shows the
color editor dialog in its RGB tab. Note that the color set in it is 8E44AD in hex, with a 0
transparency.

This dialog has the following elements:

• Custom color menu: A color menu with some custom colors, such as pure red, pure
green, pure blue, and some other color combinations.

• Copy: A button which copies the current color in the dialog to an internal DescartesJS
clipboard, so it can later be pasted using the color editor of some different element.
It is particularly useful when many different elements are to have the same color and
transparency. One only has to clic the Paste button instead of manually entering the
color for each.

• Paste: A button which pastes a previously copied color definition. When this button
is clicked, the color editor of the currently edited element adopts the copied color.

167

168 General tools

Figure 15.1.1.1: The RGB tab of the color editor dialog.

• Transparency text field and scrollbar: A text field with a horizontal scrollbar at its
right. Both control the element’s transparency (i. e., how much of the background
it allows to pass through it). By default, it has a zero transparency (100% opaque).
However, when it is desirable for an element to let the user view through it, its trans-
parency can be set using the scrollbar. A completely transparent object will not be
viewed at all. The text field allows the developer to enter the transparency via text.
Variables, constants, and expressions are allowed there. We discuss this functional-
ity soon.

• Red color component text field and scrollbar: consists of a text field and a red hori-
zontal scrollbar, both which control the amount of the red component in a color.

• Green color component text field and scrollbar: consists of a text field and a blue
horizontal scrollbar, both which control the amount of the green component in a
color.

• Blue color component text field and scrollbar: consists of a text field and a green hor-
izontal scrollbar, both which control the amount of the blue component in a color.

• Color preview panel: This panel is a rectangle with the resulting color in it. It also
has a text field with the hexadecimal color code (with transparency) of the resulting
color. The first six characters of the color code correspond to the hexadecimal color
and the last two to the transparency (also in hex). This text field can also be used to
define the color. I. e., it can be edited as well.

It is also possible to use an eye-dropper color picker to choose a color when in the RGB
tab. In order to do this, simply click the color preview panel and circle with a grid inside
appears. This circle follows the mouse, even outside the DescartesJS application. Place the
central square grid of the circle over the color you wish to pick and do a left click. The color
is instantly set in the color editor. This functionality is since the user no longer needs to
use outside applications to pick a color and then enter it in DescartesJS.

15.1 Color editor 169

If the color is to be entered via text, it can be both entered using a hexadecimal base,
or a decimal one:

Hexadecimal color code

Hexadecimal (base 16) color code is an 8 digit color code. The first 6 digits are related to
the color, and the last 2 to the transparency. Each color, and the transparency as well, have
256 (162) different possible values: 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0a, 0b, 0c, 0d, 0e, 0f,
10, 12, 13 ... 9d, 9e, 9f, a0, a1, a2 ... ff. Both upper and lower case can be used in DescartesJS.
The lowest possible value is 00 and the highest ff.

When a valid hex value is entered in one of the text fields, the related scrollbar moves to
its corresponding place. Likewise, if the bar is moved to a position, the corresponding text
field updates its content upon releasing it. The color preview panel (along with the whole
color code below it) also update when a color, or the transparency, is modified by using its
text field or scrollbar. Finally, if a color code is entered in the whole color code text field
below the preview, the single RGB (red - green - blue) color text fields update themselves,
along with their accompanying text fields.

A good practice for the user not familiarized with hexadecimal numbers is to increase
one by one the values of one of the scrollbars. This may help better understand how this
type of numeration works.

Decimal color code

Though hex notation is the most commonly used to define colors, DescartesJS also allows
for decimal notation. In this case, the minimum value is 0 and the maximum value is 1.
This notation is the one to use when the used color is given by a variable or an expression.
However, decimal numbers can also be entered directly in the single color text fields. For
example, if redColor could be entered in the text field for the red color. The variable’s
value has to lie between 0 and 1 (including both extreme values). This variable’s value
may change due to interaction, so the red component of the element’s color will change
dynamically. However, note that when a decimal expression or variable is entered in a
single color text field, the corresponding color bar will shift completely to the left and the
preview color. Consistently, the corresponding pair of digits of the color in the 8 digit
whole color code below the color preview rectangle switches to 00. In this case, this does
not mean no such color component will be introduced. It is only a way for DescartesJS to
indicate that the number is not in hex format.

It may sometimes be necessary to convert a value in hex to dec, or vice versa.

Hexadecimal to decimal conversion, and vice versa

Scientific calculators have a built-in converter so as to handle values in several different
bases. Some web pages, such as this one convert between dec and hex. If, for example,
the 9a value is converted to decimal, it turns out to be 154. Since DescartesJS handles color

https://www.binaryhexconverter.com/hex-to-decimal-converter

170 General tools

decimally only between 0 and 1, this 154 has to be re-scaled by means of a rule of 3: 0 is
to 0 as 154 is to 255 (the highest possible value in dec). So 9a turns out to be 154/255 =
0.603921.... This is the value that has to be entered in decimal form in the single color or
transparency text fields.

Note that, when values are entered decimally in the text fields, even if they are the ex-
plicit numbers and not expressions, the corresponding scrollbar does not shift. The color
preview panel may shift, by setting that color component to a zero value. Nonetheless, the
expected color is visible in the interactive scene if the changes are applied. If the value
entered is lower than 0, that color component is assigned its lowest possible value: 0. If
the value entered is larger than 1, it is assigned its highest possible value: 1.

15.1.2 Gradient

This tab of the color editor allows the user to implement color gradients. Figure 15.1.2.1
shows this tab’s elements.

Figure 15.1.2.1: The Gradient tab of the color editor dialog.

This tab has the following parameters:

• x1, y1, x2, and y2: these are four textfields. x1 corresponds to the horizontal coordi-
nate of the start of the gradient vector. y2 is the vertical coordinate of the start of the
gradient vector. x2 and y2 are the coordinates of the end of the gradient vector. These
coordinates are absolute coordinates. The gradient is drawn following the vector de-
fined herein. And the absolute coordinates are taken regarding the container where
the gradient is to be applied (be it a button’s background, a space’s background, etc.,
depending on the object housing it).

• +: a button to add a stop. Each stop can be used to define a different gradient. And
each stop has the following parameters:

15.1 Color editor 171

– Stop: a text field where a number between 0 and 1 is entered. This number
indicates where the gradient color starts. 0 corresponds to the beginning of the
gradient vector, and 1 to its end.

– color selector: a button, with a frame with the color used, which when pressed
launches a color palette. To select a color, click on the desired one in the palette
and it is automatically translated to a color code displayed at the bottom of the
palette. The color can also be typed directly as a color code. The code used can
be set to RGB, HSL, or hexadecimal.

– -: a button to remove the stop.

The horizontal bar at the top of this tab displays an example of how the gradient looks,
and so it is good practice to check it regularly. The color buttons associated to each stop
adopt the color selected in their respective palette. Once a gradient has been accepted, the
color dialog button used (whether for a button’s background, a space’s background, etc.)
is displayed with the chosen gradient. Figure 15.1.2.2 shows the color palette displayed
when clicking on a stop color button.

Figure 15.1.2.2: The color palette window of a stop in a gradient.

As an example, consider a segment graphic type object set using the following absolute
coordinates: (0,0)(200,200). Its Gradient tab parameters are then set to x1 = 0, y1 = 0,
x2 = 200 and y2 = 200. In this example, the gradient vector follows the same direction as
the graphic vector itself (from left to right and from top to bottom). If the stop with the 0
value is set to a yellow color, and the one with the 1 value is set to a red one, the yellow-to-
red gradient will be drawn in the direction of the segment. However, if the following values
are given: x1 = 200, y1 = 200, x2 = 0 and y2 = 0, the color gradient is then reversed, with
the yellow near the bottom and the red near the top. Furthermore, if the following set is
given: x1 = 0, y1 = 200, x2 = 200 and y2 = 0; the whole segment is drawn in the same orange
color. This happens because the gradient vector is perpendicular to the segment, and the
segment lies near the middle of the gradient, where the color is a 50/50 combination of
yellow and red: orange.

Let us try another example. Consider a rectangle graphic object with the following
absolute coordinates: (0,0,200,100). If this rectangle’s fill is set to be a gradient with the

172 General tools

following set: x1 = 0, y1 = 0, x2 = 200 and y2 = 100; a first stop (with 0 value) is set to a blue
color; and a second stop (with a 1 value) is set to black; the gradient will then be from the
top left corner of the rectangle to the bottom right one, since the gradient vector follows
the rectangle’s diagonal. However, if the following set is given: x1 = 0, y1 = 100, x2 = 200
and y2 = 0; the gradient goes from the bottom left corner to the top right one. With a
gradient vector given by x1 = 0, y1 = 0, x2 = 200 and y2 = 0; the gradient is horizontal
from left to right (the same color appears for any two given points with the same vertical
coordinate). And if the x1 = 0, y1 = 0, x2 = 0 and y2 = 100 set is entered, the gradient is
vertical, from top to bottom (the same color appears for any two points with the same
horizontal coordinate).

As a final example, consider the same rectangle as before. As a minor few changes, set
the first stop at a 0 value and the second stop at a 0.1 value. Use a horizontal gradient from
left to right (x1 = 0, y1 = 0, x2 = 200 and y2 = 0). The blue-to-black gradient only spans
the first horizontal 10% of the rectangle. The 90% right hand side remainder is completely
black (the color of the last stop included). This behavior responds to the fact that the first
stop is set at 0.1 (which is 10% of 1). This same effect can also be achieved if the first stop
is set at 0, the second at 1, but the gradient vector is set to x1 = 0, y1 = 0, x2 = 20 and y2 = 0.
The effect is the same since the vector gradient’s second stop starts at 20, and 20 is 10% of
200 (the rectangle’s width).

15.1.3 Pattern

The Pattern tab of the color editor tool allows the user to include an image (jpg, png or
static gif) inside the object in which it is implemented (button’s background, etc.). Figure
15.1.3.1 is an example of a configuration of this tab.

Figure 15.1.3.1: The Pattern tab of the color editor tool.

This tab only has one element:

• image: a text field in which the path to the image file is entered. If a path relative to
the scene’s html file is to be used, the scene’s file should be saved first.

15.2 Text editing tool 173

The image starts at the origin of the canvas (the area to be covered where the image is
used). From there, it repeats itself (as a mosaic) until the whole canvas is spanned.

When a pattern is used, the related element’s image tool button has a generic land-
scape as its inner image, thus indicating that a pattern is being used.

When a gradient is used as an inner color of a scrollbar control, the color of the bar’s
handle changes depending on the handle’s relative position in the bar. The scrollbar’s left
and right buttons also adopt the gradient’s extreme colors. If the scrollbar uses a pattern
instead, the image used is drawn in the scrollbar’s handle.

15.2 Text editing tool

The text editing tool is available for a variety of graphic elements, such as the point, the
segment and, more obviously, the text. It is also available in elements involving text beyond
graphic objects. However, its functionality is basically the same in all cases.

A text field is typically present where text can be entered on the fly. There is normally a
field where the text can be entered in a single line. And, afterwards, a T button is present,
which is used to enter plain text; and an Rtf button is present as well, which is used to
enter text in rich text format (hence the initials).

15.2.1 Plain text editor

When the T button, adjacent to a text entry field, is clicked, a window opens where multi-
ple lines of text can be entered comfortably. Figure 15.2.1.1 show such a window.

Figure 15.2.1.1: Plain text entry window.

Three different fonts are available: SansSerif, Serif y Monospaced. The selected font
is applied to all the text in the window (i. e., it is not possible to have different text in

174 General tools

different fonts in a plain text). The plain text editor also has a menu to select the size
of the font. Two checkboxes are also present with which a bold and italics format can
be implemented. And, finally, there is a button with various symbols in it, which when
clicked displays a panel to select special characters. Figure 15.2.1.2 shows this panel. The
left hand slide of this panel has a menu which allows the developer to move more directly
to a group of special characters from the same origin. This panel is particularly useful to
enter mathematical operators or greek letters.

Figure 15.2.1.2: Special character selection panel, inside the plain text editor.

Line breaks in this plain text window are introduced simply by typing the ENTER key in
the keyboard. Once text has been introduced in this window, it can be accepted via the Ok
button, or rejected via the Cancel button. If accepted, the text is then also displayed in the
text field of the element. All text appears in a single line, the line breaks represented by \n
(a backslash followed by n). Conversely, it is also possible to enter the text in the text field,
using \n to separate lines, and if the plain text window is afterwards opened, the entered
text will appeare there in multiline format.

Even though there is a rich text format entry window, certain instructions in the plain
text window can be used to enrich the format of the text to some extent. These are in-
structions similar to the ones used in the L ATE X language. Edition is limited to color,
bold, italics, some alignment options, and a few examples of math language.

• Word coloring: When a part of the text is to have a different color, \color{}{} is
used. The first set of curvy brackets contains the hex code of the color to be used,
while the second set contains the text to which that color is applied.

For example, if Hi, \color{ff0000}{how} are you? is entered as plain text,
the changes accepted and applied, the printed text should be: Hi, how are you?

• Bold: Bold style letters are defined using \b{} The bold style letters go between the
curvy brackets.

15.2 Text editing tool 175

For example, if Descartes\b{JS} is entered, the following is printed: DescartesJS.

• Itálicas: Similar to the bold formatting, italic style letters are implemented using
Descartes\i{JS} \i{}. The italic style letters go between the curvy brackets.

• Mathematical expressions: Mathematical expression go inside the curvy brackets
of \${}.

– Superscripts: The ˆ character is used to format whatever character (or block of
characters) follows it. If more than one character is to be placed as superscript,
the block of characters should be flanked by curvy brackets ({}). If it consists
of a single character, the brackets are not required.

For example, to get ABC , it is necessary to enter \${A∧{BC}}.

– Subscripts: Their behavior is practically the same as for superscripts. However,
the underscore (_) symbol is used for subscripts as the ˆ is used for superscripts.

For example, to get ABC , it is necessary to enter \${A_{BC}}.

– Fractions: The \frac{}{} element is used inside a mathematical expression.
The numerator is placed inside the first set of curvy brackets, the denominator
in the second.

For example, in order to display the ex

b2
fraction, it is necessary to enter

\${\frac{e∧x}{b_2}}.

– Roots: The \sqrt{}{} code is used inside a mathematical expression. The
index of the root is placed inside the first set of curvy brackets. The radicand is
placed inside the second set. It is possible to leave the first set empty, in which
case no index is displayed (the summarized version of the square root).

For example, to get 3
p

sin(a), it is necessary to enter \${\sqrt{3}{sin(a)}}.

And to get
p

sin(a), \${\sqrt{}{sin(a)}} would have to be entered.

– Integrals: The \int{}{}{} code is entered inside a mathematical expression
to display integrals. The integral’s lower limit is placed inside the first set of
curvy brackets, the upper limit in the second set, and the integrand and vari-
able of integration in the third.

For example, entering \${\int{a}{b}{x∧2 dx}} results in printing
∫ b

a x2d x.

If nothing is entered in the first and second sets of curvy brackets, an in-
definite integral is printed.

– Sums: The \sum{}{}{} code is used inside a math expression to print sums.
The initial value of the index of the sum is placed inside the first set of curvy
brackets, the upper value of the same inside the second set, and the argument
of the sum inside the third set.

For example, entering \${\sum{i=1}{n}{i∧2}} results in printing
n∑

i=1
i 2.

– Products: Its \prod{}{}{} code is similar to that of sums and integrals. The
initial value of the index of the product is placed in the first set of curvy brack-
ets, its upper value in the second set, and the argument of the product in the
third set.

176 General tools

For example, entering \${\prod{i=1}{n}{A_i}} results in printing
n∏

i=1
Ai .

If the graphic text object is set to use Serif as its font, mathematical expressions
will be displayed in italics by default, since that is the font typically used to
display equations and other mathematical language.

• Centered align: The text to center is entered inside the curvy brackets of the \c{}

code. If the text width parameter has a 1 value (i. e., there is no horizontal limit to the
text), then the text is centered relative to the longest line present. Otherwise (if, say,
text width is set to 500), the text is centered relative to the whole 500 px indicated.
The text width topic has more information of this parameter.

• Right align: Its functionality is similar to that of the centered text. The text is entered
inside the curvy brackets of an \r{} expression.

• Left align: The text is entered inside the curvy brackets of an \l{} expression.

• Justified align: The text is entered inside the curvy brackets of an \j{} expression.
The text is justified relative to the width, in px, entered in the text width parameter.

Various text editions can be nested one inside the other. For example, to print a text
such as Hola, in which the text is blue and the o is in bold, it is necessary to enter:
\color{0000FF}{H\b{o}la}.

This type of edition is recommended for texts whose formats are not to be excessively
complicated. For those that are, the rich text format discussed next is the suitable option.

15.2.2 Rich text format editor

When the Rtf button adjacent to a text field is clicked, a different text edition window is
displayed. It has a lot of buttons near its top margin. These allow the inclusion of different
types of text, as well as mathematical symbols. This window is displayed in Figure 15.2.2.1.

This window can be used to enter text as in the plain text one. However, it is possible
to apply different formats to different parts of the text by selecting them and applying
the formats afterwards. For instance, bold style, italics, a specific font type or size can be
applied to different selection of the text.

Apart from the first controls, with which we are already familiar, there are more sofisti-
cated ones:

• underline button: It has an underlined U, and applies an underline to the selected
text.

• overline button: It has an overlined O, and applies an overline format to the selected
text.

• color button: It has a color inside it. When clicked, the color editor dialog is launched,
and the color there selected is applied to the selected text.

15.2 Text editing tool 177

Figure 15.2.2.1: Rich text format entry window.

• [F] button: It inserts a formula box at the right of the cursors position.The box has
the shape of a text field with a dotted border. Once added, the cursor can be placed
inside it to enter mathematical expressions. The buttons following the [F] one in that
line are used to enter a certain form (for instance, an expression to print a variable’s
value, or the 3

4 to enter fractions). The form is entered inside the formula box.
The CTRL + f keyboard shortcut in windows inserts a formula box as well (i. e., it
does exactly the same as clicking the [F] button) when inside the rich text edition
window.

• exp button: This button is used to enter expressions. Expressions can be constants,
a variable’s value, or a math expression calculating a value. When the text is printed
in a scene, their value is printed. Using expressions in rich text format is analogous
to flanking an expression between square brackets [] when using plain text. For ex-
ample, some part of the program may have an a=2+1 assignment. a could be en-
tered as the expression’s argument, and the resulting 3.00 value would be printed
in the scene. To enter the expression to print, a double click is done on the yellow
highlighted expr box entered when the exp button is clicked. This brings up the
expression dialog. In the valor text field (valor is Spanish for value) field, the ex-
pression is entered. That dialog also has another field to specify how many decimals
this expression is to show, and whether they are fixed or not. These specifications
are particular to this expression only, and are not used generally for other values
the text may print, as is the case when using the plain text editor. Expressions are
housed inside a formula box. If the exp button is clicked while the cursor is not in a
formula box, a formula box is then created where the cursor is, and an expr expres-
sion added inside it. Expressions may be placed in any placeholder inside a formula.
For instance, an integral’s upper limit may be an expression, so that this limit varies
depending on certain conditions in the scene.

178 General tools

• fraction button: A button with a 3/4 text. When clicked a fraction form is entered
at the cursor’s position inside the formula box. If the cursor isnot in a formula box,
one is created with the fraction inside it. This fraction form has a numerator and
denominator placeholder.
The keyboard shortcut to this form is CTRL + 7.

• superscript button: This button has a x2 text in it. It adds a base and exponent
(superscript) placeholder at the cursors position. If such is outside a formula box,
one is created on the fly.
The corresponding keyboard shortcut is CTRL + ↑, where ↑ is the keyboard’s upward
pointing arrow.

• subscript button: This button has a x2 text in it. It adds a placeholder for an expres-
sion and one for its subscript, at the position of the cursor. If the cursor is not inside
a formula box, one is created on the fly.
The corresponding keyboard shortcut is CTRL + ↓, where ↓ is the keyboard’s down-
ward pointing arrow.

• root button: This button has a root’s radical symbol in it. It adds the radical symbol
at the cursor’s position. If the cursor lies outside a formula box, one is added on the
fly. The radical symbol added has a placeholder for the radicand and the index of
the root.
The corresponding keyboard shortcut is CTRL + r.

• sum button: This button has the greek sigma (Σ) character in it. When clicked, it
adds a sum math symbol at the cursor’s position. If the cursor is outside a formula
box, one is created on the fly. The sum has three placeholders: one for the starting
value of the sum’s index, one for its upper value, and one for the sum’s argument.
These can be navigating using the keyboards four arrows.
The corresponding keyboard shortcut is CTRL + s.

• integral button: This button has an integral calculus symbol (
∫

). It adds an integral
at the cursor’s position. If the cursor lies outside a formula box, one is created on
the fly. Once added, the keyboard’s arrow keys can be used to navigate the three
placeholders in it: the integral’s lower limit, its upper limit, and the integrand.

• limit button: This button has the word lim in it. When clicked a limit form is entered
in the cursor’s position. If the cursor lies outside a formula box, one is created on the
fly. The keyboard’s arrow keys can be used to navigate the placeholders: one for the
limits variable, one for its tendency value, and one for the limit’s argument.
The corresponding keyboard shortcut is CTRL + l.

• matrix button: This button has a matrix symbol in it (square brackets housing four
dots in a 2×2 disposition). When clicked, a matrix definition dialog is launched:

15.2 Text editing tool 179

The menu in the dialog allows the developer to select the symbols flanking the en-
tries of the matrix (square brackets, parentheses, curvy brackets, simple vertical
bars, or double vertical bars can be selected). The m and n parameters correspond
to the number of rows and columns, respectively. Once the matrix has been added,
it appears at the position of the cursor in the text. If the cursor lies outside a formula
box, one is created on the fly. The entries of the matrix have placeholders that can
be navigated using the keyboard’s arrow keys.

• function definition by parts button: This button has an opening curvy bracket fol-
lowed by a couple of dots in it. When clicked, a dialog launches with a parts text
field, in which the number of parts defining a function by parts is entered. Once ac-
cepted, the opening curvy bracket appears with one placeholder for each part of the
defined function. The keyboard’s arrow keys can be used to navigate the placehold-
ers. The whole function definition is inserted at the cursor’s position. If the cursor
lies outside a formula box, one is created on the fly.

• special characters panel: Identical to its special characters button counterpart in
the plain text editor. When clicked, a panel is displayed with special characters in it.
They are grouped by categories, which are listed at the left hand side of the panel,
and may be clicked to move form one category to another.

Be aware that the size control in the rich text edition window is a text field (as opposed
to a menu), and it therefore allows for values between 8 and 200.

Besides the button already mentioned, there are two rows of buttons. All greek letter
symbols are included in these, besides some useful math and text operators. When one of
this is clicked, the symbol is added at the position of the cursor. If the SHIFT key is pressed
down, these symbols switch to their upper case version (for the letter ones).

When text is added in a placeholder inside a math formula box, it is always possible
to insert text to its left or right by moving the cursor to the desired place. Additionally,
grouped placeholders (such as in the radical, fraction, or integral) can be simultaneously
removed by placing the cursor at the right of the whole group and keying the backspace
key; or by placing the cursor at the left of the whole group and keying the delete key. Pre-
cision is required if, instead of removing a whole group, only a single character is to be
removed. The easiest way to achieve this is by placing the cursor at the right (or left) of
the particular character by using the keyboard’s arrow keys. Once there, the backspace (or
delete key if the cursor is at the left of the character to remove) key is used and the single
character is removed. Also, if a new line is to be entered after some math formula, it is first
necessary to place the cursor at the right of the formula outside the formula box and then
click the ENTER key to add a new line.

180 General tools

It is possible to combine different text forms to get complicated math expressions. For
example, a continued fraction such as 1

1+ 1
1+...

can be printed by first entering a fraction first,

then entering the numerator and, after moving to the denominator placeholder, typing 1+
and clicking the fraction button again. Repeating this process, more and more iterations
of the continued fraction can be included.

It is also possible to assign different styles inside a same box formula. This makes it
possible to use different colors, or even fonts, inside a same formula.

When the Ok button is clicked, the rich text editor window closes and the configuration
editor is displayed again. The text parameter in it diplays the edited text. It has some code
in it, which is not necessarily what the user entered. This is the rich text code required for
the text to have its given format. When the changes are applied, the printed text looks just
like it did in the rich text format editor.

A brief exercise may put everything in perspective. This exercise’s interactive scene,
along with the instructions to build it, can be found at Text editor. The interactive scene’s
file as such can be found at this link. All these files are also stored in the DescartesJSDocu-
mentation.zip file.

This exercise shows that more mathematically aesthetical formulas can be entered us-
ing the rich text editor, even though it may be more difficult to use than the plain text one.
Additionally, it enables the developer to enter different expressions with different decimal
conditions inside a same text graphic object.

15.3 The virtual keyboard

The native keyboard of most mobile devices takes up a considerable proportion of the
screen, thus reducing the area reserved for the running application. DescartesJS has the
option to use a custom made keyboard instead, which is displayed inside the scene itself,
so as not to reduce the scene’s size. This is the DescartesJS virtual keyboard.

The virtual keyboard is housed inside the scene, and the developer may choose its
coordinates. It is only implemented when the keyboard checkbox of a text field supporting
control is marked. Text field supporting controls are those whose values can be entered by
means of a text field, such as the textfield, the spinner, the scrollbar and the menu controls.

There are many different keyboards available for selection. The choice should be made
depending on which one best adheres to the control’s desired functionality. For example
if the user is to enter a purely numerical answer, the 7×2 or the 14×1 keyboards would
be the ideal choices, since they have no operation symbol, thus discouraging the use of
the DescartesJS internal calculator. The 4× 4 keyboard includes basic operators such as
the + and -. The 5× 4 one includes also the × and / operators. If the user is to provide
alphanumeric answers, the 10×4_al f a might be the best choice.

https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/TextEd/index.html
https://descartes.matem.unam.mx/doc/DescartesJS-EN/Exercises/TextEd/TextEd_scene.html

15.4 Keyboard shortcuts 181

Figure 15.3.0.1: The various virtual keyboards available.

When a character or number key is selected in a virtual keyboard, its character is en-
tered in the cursor’s position inside the keyboard’s text field. To exit the keyboard and
accept the changes, the virtual keyboard’s enter key has to be selected.

The virtual keyboard is only displayed when a user clicks on the text field of the control
for which the keyboard is to be used. The keyboard is closed upon leaving the text field.
When the keyboard is displayed, the remaining area of the scene not occupied by it turns
slightly grayer. This is done so the user knows the only possible interaction is with the
keyboard only (all other elements in the scene become inactive).

The keyboards have some hidden characters. For example, when a vowel remains
pressed, the accentuated versions of the vowel are displayed on top of the keyboard. If
the decimal point is pressed down and held, several symbols are displayed at the top as
well. Since these extra characters are displayed above the keyboard, the keyboard should
be placed at least 50 px below the space’s top margin so the extra characters may be visu-
alized. For example, (100,50) could be entered in the keyboard position parameter, so as
to leave enough space for these characters to be displayed.

15.4 Keyboard shortcuts

15.4.1 Shortcuts to the configuration editor and its tabs

DescartesJS has several keyboard shortcuts to access its most frequently used elements.
These are listed in the following list. The CONTROL key is abbreviated as CTRL in their
description. The + symbol indicates two keys are pressed simultaneously.

Shortcuts used when in the DescartesJS main editor.

182 General tools

• CTRL+E: If the CONTROL key and the E one are clicked simultaneously, the config-
uration editor is launched.

Shortcuts used when inside the DescartesJS configuration editor.

• CTRL+1: This combination displays the Scene tab.

• CTRL+2: This combination displays the Spaces tab.

• CTRL+3: This combination displays the Controls tab.

• CTRL+4: This combination displays the Definitions tab.

• CTRL+5: This combination displays the Programs tab.

• CTRL+6: This combination displays the 2D Graphics tab.

• CTRL+7: This combination displays the 3D graphics tab.

• CTRL+8: This combination displays the Animation tab.

• CTRL+ENTER: This combination applies the changes, just like when the Apply but-
ton of the scene’s configuration editor is clicked.

• CTRL+ALT+INTRO: This combination accepts the changes, just like when the Ok
button of the configuration editor is clicked.

• CTRL+BACKSPACE: This combination closes the configuration editor, just like when
the Close button of the configuration editor is clicked, ignoring any changes.

15.4.2 Listed elements navigation shortcuts

The Spaces, Controls, Definitions, Programs, Graphics y 3D Graphics tabs of the configu-
ration editor each have a panel at their left hand side, where the various elements of that
tab are listed. When this panel is selected in one of the tabs, it displays a dark blue border
around it, and only then do certain keyboard shortcuts become available.

When the panel is selected and there is more than one element listed in it, the key-
board’s up and down arrows (↑ and ↓) can be used to move the selection to the element
above or below, respectively.

If an element is selected in a list with multiple elements, the CTRL + ↑ moves the se-
lected element one place upwards in the list (if it is not already at the top), and the CTRL +
↓ moves it one place downwards (if it is not at the bottom).

These shortcuts allow for a better and more agile organization and visualization of the
elements in a list, and are especially useful for developers who favor the keyboard over the
mouse.

	About this document
	What is DescartesJS?
	The beginnings of Descartes
	Recent changes

	Introduction to DescartesJS components
	The editor
	The interpreter

	Learning to use the editor
	First time setup
	Changing the DescartesJS editor and configuration editor language
	Changing the scene configuration language

	The Editor's menu bar
	The File menu
	The Options menu
	The Help menu

	The scene configuration editor (SCE)
	Tabs
	Buttons in the scene configuration editor

	The Scene tab
	The Spaces tab
	R2 or two dimensional space
	R3 o tridimensional space
	HTMLIFrame space
	Spaces' panel in the Spaces tab

	The Graphics tab
	2D Graphics
	Equation graphic
	Curve graphic
	Point graphic
	Segment graphic
	Polygon graphic
	Rectangle graphic
	Arrow graphic
	Arc graphic
	Text graphic
	Image graphic
	Macro graphic
	Sequence graphic
	Fill graphic

	3D graphics
	Segment graphic
	Point graphic
	Polygon graphic
	Curve graphic
	Triangle graphic
	Face graphic
	Regular Polygon graphic
	Surface graphic
	Text graphic
	Macro graphic
	Cube graphic
	Box graphic
	Tetrahedron, Octahedron, Dodecahedron and Icosahedron
	Sphere graphic
	Ellipsoid graphic
	Cone graphic
	Cylinder graphic
	Torus graphic
	3D graphics general exercise

	Parameters common to 2D graphic objects
	Parameters common to 3D graphic objects

	The Controls tab
	Spinner numeric control
	Text field numeric control
	Menu numeric control
	Scrollbar numeric control
	Button numeric control
	Checkbox numeric control
	Graphic control
	Text control
	Audio control
	Video control
	Elements common to multiple controls

	The Programs tab
	INICIO
	CALCULOS
	Events

	The Definitions tab
	Variable definition
	Array definition
	Matrix definition
	Function
	Library

	The Animation tab
	DescartesJS intrinsic functionality
	DescartesJS intrinsic variables
	Space variables
	Mouse variables
	Text field control variables
	Graphic control variables
	Audio and video control variables
	Array and matrix variables
	Path variables
	DescartesJS general variables
	Numerical constants
	Information and customization variables

	DescartesJS intrinsic functions
	Common functions
	DescartesJS language functions
	HTMLIFrame space functions
	Audio and video control functions
	Menu numeric control related functions
	Matrix and array information transfer through text variables

	Boolean Operators and conditionals
	Boolean operators and their use in conditions
	Using mute variables to condition the execution of functions

	Generic operators
	Math operations order and hierarchy
	Update order when handling a scene
	Updates upon loading a scene
	Subsequent updates

	Data saving and retrieving
	Saving and retrieving information in files
	Data saving and retrieving within a scene

	General tools
	Color editor
	RGB
	Gradient
	Pattern

	Text editing tool
	Plain text editor
	Rich text format editor

	The virtual keyboard
	Keyboard shortcuts
	Shortcuts to the configuration editor and its tabs
	Listed elements navigation shortcuts

